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Letter from the Editor

This issue of The Next Wave is largely derived from talks given at the 2008 and 2009 Network
Mapping and Measurement Conferences (NMMCs), held at the Laboratory for Telecommunications Sciences
(LTS) in College Park, Maryland. These conferences evolved from the NetTomo workshops I-IV, which
grew out of research on network tomography sponsored by the Information Technology Industry Council
(ITIC). By 2007, it became obvious that a broader scope was needed than strictly network tomography, and
the name change was instituted in 2008.

Network tomography and mapping are closely related fields. To explain the difference between
tomography and mapping, here are two simple definitions. Network tomography is the study of a network’s
internal characteristics using information derived from end-point data. Network mapping is the study of the
physical connectivity of the Internet, determining what servers and operating systems are running and where.
A deeper explanation of tomography follows. For a longer discussion of mapping, please see the article
“Mapping Out Faster, Safer Networks.”

Network tomography is generally of two types—both of them massive inverse problems. The first
type uses end-to-end data to estimate link-level characteristics. This form of tomography often is active
in nature, using many pings, traceroutes, and other mapping tools to obtain the necessary data. Due to the
large amount of undesirable traffic experienced by many networks, routers or other network equipment may
not respond to ping or traceroute requests. This deficiency has led to a second form of network tomography
that is sometimes called inferential network tomography. This form of network tomography uses individual
router- or node-level measurements to recover path-level information. This data can be obtained passively,
and it does not create a traffic burden that has the potential to change the logical network structure. The study
of network tomography includes network topology (both logical and physical), the origin-destination traffic
matrix, and quality of service parameters such as loss rates or delay characteristics. Accurate and timely
information about traffic flows are necessary for good network management.

Network tomography research leads to other topics of interest.

1. How do you measure the network?

2. What kind of networks do these techniques apply to?

3. Does it matter if you test parts of the network individually, and then put them all
together, or does the entire network need to be in the test? (integration testing)

4. What sensing techniques are best to use?

5. Exactly what kind of data do you need to gather?

6. What about techniques from other disciplines, such as social networking?
Will they apply to the networks you are interested in?

7. How does industry do their network mapping?

8. What about attribution?

Some of these questions were addressed at the NMMC sessions, and, therefore, are addressed in the
following articles. (See “Compressed Sensing and Network Monitoring,” for example, regarding question
number four above.) Many more questions arise in the study of network mapping and measurement.
The NMMC series has been a huge success, with participants from different countries, federal agencies,
universities, and industry. NMMC 2010 will be held August 9-11 at McGill University in Montreal, Canada.

The Next Wave is published to disseminate significant technical
advancements in telecommunications and information technologies.
Mentions of company names or commercial products do not imply
endorsement by the US government. Articles present views of the
authors and not necessarily those of NSA or the TNW staff.

For more information, please contact us at TNW @tycho.ncsc.mil
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The graph that appears on the
cover of this issue of The Next Wave
shows the router level connectivity
of the Internet as measured by
the Internet Mapping Project.
The work is being commercially
developed by Lumeta Corporation.

Credit:
Patent(s) pending and copyright © Lumeta
Corporation 2009. All rights reserved.
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Safer Networks

Maps. We use them every day. Your GPS guides you to that new
restaurant you've wanted to try. The information map in the mall points
out where HERE is. Online gamers pull up battle maps to navigate virtual
worlds. The social network of your friends and your friends’ friends
weaves a cat's cradle of intertwined relationships. Your computer files
are stored in folders that are displayed hierarchically. Site maps lay out
how web pages link up. And think how much easier life would be if you had
a map of the labyrinth of telephone options you need to navigate—"Press
1 for hours and locations”...”"Press 2 to report a problem”..."Press 3
for account information”™—when you try to pay your electric bill over the
phone.

Maps don't just show how things are connected. They can also identify
trouble spots and weak points you need to be aware of. GPS maps are
able to alert you to traffic tie ups due to accidents or lane closures so
you can adjust your route. Your security system might display a floor plan
that shows which windows and doors are unlocked so you can protect
your property.

Network mapping does the same things for the Internet, helping to
direct traffic and expose vulnerabilities. Network mapping can happen at
different layers of the Internet, including applications, routing, or physical
infrastructure, or in different parts of the Internet. Because the Internet
changes constantly, any map of any variety—there are many Internet
maps and no two agree—addresses a moving target.

4 Mapping Out Faster; Safer Networks



Tracing network routes

Network maps track the routes information
packets take across an IP (Internet protocol)
network to reach a remote host. Network routing is
opportunistic, assigning packets to the first available
router. This approach means traffic can be directed
along different paths to reach a destination, and
the number of hops needed to get there can vary.
Network mapping makes it easy to visualize what
routes are being taken.

The traceroute network utility was introduced
on Unix operating systems in 1987 to map network
traffic. Variants of the traceroute program are used
on other operating systems—tracecert and ping
utilities are used on Windows operating systems,
and tracepath is the network tool used on current
Linux installations.

Network technicians use the traceroute utility
to troubleshoot network problems. Knowing a
packet’s traceroute can help identify failed routers
or firewalls that are obstructing traffic. Traceroute
can also be used for penetration testing, to hunt for
network entry points that could pose a security risk.

Hackers are especially interested in finding
back doors into networks, and they have readily

adopted traceroute as an easy way to exploit network
vulnerabilities. It didn’t take cybercriminals long
to discover that not only can the utility be used to
locate a network’s weak points, initiating traceroute
from multiple systems can flood a network to launch
a denial-of-service attack.

The Internet Mapping Project

Traceroutes were initially used by network
administrators to troubleshoot and tune local
networks, but the utility would eventually be
applied on a much larger scale. As the World Wide
Web rapidly grew in popularity during the 1990s,
the need for a world-wide map was realized. Efforts
to map network traffic globally began in earnest
with the Internet Mapping Project, started by Bill
Cheswick and Hal Burch at Bell Labs in 1998.
Every day for eight years, the project recorded
traceroutes for trillions of packets traveling across
hundreds of thousands of IP networks. The network
map that emerged painted a picture resembling a
sky filled with fireworks on the Fourth of July. (See
the cover image for an example.)

Now managed by the Lumeta Corporation,
which spun off from Bell Labs in 2000, the Internet
Mapping Project continues to chart the back roads

The Next Wave = Vol 18 No 32010 5



and thoroughfares of Internet traffic. The goal of the
project has been to provide global network visibility
through the accurate measurement of four factors:
(1) network topology, (2) address space, (3) leaks,
and (4) device fingerprints. Independent discovery
processes are used to reveal these four components

that define a network.

Network topology

Network topology describes the flow of
network traffic and the bottlenecks that slow it
down. A computer’s network discovery setting
affects whether it can see other computers on the
network, or be seen by them. A computer can
operate in stealth mode by setting its network
discovery setting to off. Such “dark” components,
when discovered, can add details to a network map
for a clearer picture of the network’s topology.

Visualizing network topology makes it easier
to find ways to accelerate network traffic. The
Internet highway is getting clogged with streaming
videos, mountains of emails, music downloads,
online photo albums, high-definition movies, and

epic battles in virtual worlds.

Grid computing may someday usher in an age
when bandwidth is virtually unlimited, but in the
meantime, pressure is on to squeeze the broadband
tube a little harder.

An obvious solution for speeding up network
traffic is to increase the bandwidth it travels on.
Service providers worldwide have been challenged
to roll out 100 Mbps broadband over the next decade,
and trials for achieving speeds twice that are already
underway. But another approach to moving network
traffic faster is to move it smarter. By mapping out
a comprehensive route-based topology, the true
perimeter of the network is defined—a first step
in understanding network limitations. Network
maps can then be used to identify bottlenecks and
chart shortcuts, making it possible to devise more

efficient ways to move packets to their destinations.

6 Mapping Out Faster, Safer Networks

Address space

As enterprises and government agencies try
to balance the forces for network change with the
requirements for risk management and compliance
initiatives, IT security managers are faced with the
formidable task of securing what they aren’t even
aware of. The solution lies partly in discovering all
of a network’s entities —those that are authorized as
well as those that are unauthorized. Network host
discovery is used to conduct a census of IP addresses
across protocols and reveal known and previously
undetected network entities. Host discovery is one
of the earliest phases of network reconnaissance.

Address space determines the amount of
memory allocated to a computational entity such
as a networked computer, a file, a server, or some
other device. A unique number assigned by the
Internet Assigned Numbers Authority (IANA)
identifies individual network nodes. IPv4 (Internet
Protocol Version 4) address space is limited to a
32-bit field, yielding a maximum 4,294,967,296
unique addresses. But the supply of available IPv4
addresses is rapidly running out. The move to IPv6,
with a 128-bit field, should extend the availability of
new addresses well into the future. As the number
of IP addresses increases, the need to identify hosts
that are active and then focus on them becomes
even more important for securing a network.

Network leaks

Network leaks occur atnodes thatinadvertently
let information packets pass from a local network
to the Internet, or, more important, that let packets
from the outside get in. Leak discovery tools identify
unauthorized or previously undetected inbound and
outbound network traffic and the nodes that passed
them through. This information is vital for setting
up network defenses.

A common way to probe for network leaks
is by tracking the routes of IP packets that use a
forged source address. When the targeted machine
responds to a traceroute request, logs from these
spoofed IP requests reveal which routers passed the



packets on to their destination. Tests from outside a
network that turn up inside indicate a firewall leak.

Once network leaks have been detected, IT
managers can plug the holes by deleting links to
the Internet that shouldn’t be there and eliminating
unauthorized devices. Lumeta’s Cheswick considers
taking such precautions simply as good “network
hygiene.”

Device fingerprints

Even with the most rigorous network defenses,
leaks are likely to persist. Knowing the IP addresses
of potential attackers isn’t enough to protect a
network. Operators can and do change IP addresses,
often intentionally to avoid identification. But most
devices also carry a code that serves as a fingerprint,
making their identities harder to conceal.

Many venders assign a unique CDI (client

device identification) code to the products
they manufacture. These device IDs, or device
fingerprints, make it possible to challenge off-site
computers and other computational devices trying
to access a local network. And, as with human
fingerprinting, a device fingerprint can be a valuable
forensics tool. Device fingerprint discovery
provides a summary of the software and hardware
settings collected from remote computing devices
to identify the source of new attacks or other hosts

of interest.

Although a sophisticated attacker can spoof
a CDI, there are ways to know if the code has
been tampered with. Identifying a device with a
fingerprint that has been altered or even removed
can tip off nefarious activity, providing another
source of information that can be used to enhance
network security.

Faster, more secure networks

Network maps are useful tools for improving
existing networks, and they can be crucial for the
evolution of IPv6 and beyond. Network mapping
makes it possible to visualize network topology,
identify address spaces, find network leaks, and

match device fingerprints. What’s more, as a
network’s topology is filled in, a clearer picture
of the characteristics of the network is revealed,
providing for even more detailed analyses. The
analysis of network maps can lead to moving traffic
faster, keeping information safer, and finding cyber
criminals easier.

The Internet Mapping Project has been a
driving force behind the development of effective
network mapping tools and practices. By producing
varied and detailed perspectives of global Internet
connections, the Internet Mapping Project has
provided insight into better ways to connect the
world. (4
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Figures 1 and 2:

These two snapshots show where Akamai
is physically deployed, with each spire re-

presenting a city where Akamai has servers.

(Akamai can have ten or twenty datacenters
in major cities.) The size and color of the
spires represent the capacity and load for
that region.

8 How Akamai Maps the Net

How Akamal
Maps the Net:

An Industry Perspective

In 2010, everyone uses the Internet. Even if you don’t browse
the Web, your computer, DVD player, and other appliances try to pull
software and firmware updates without your interaction. Your cell phone
uses the Web to pull updates, ringtones, and video, and soon your car will
talk wirelessly to the gas station while it’s filling up. Akamai is behind
the scenes of much of this networked activity, so whether you know it or
not, you probably use Akamai every day.

Akamai Technologies operates a delivery platform for the world’s
Web content and video, delivering tens of thousands of websites and
hundreds of billions of transactions every day. Its customers include
the top retailers, portals, media and entertainment firms, advertisers,
software and hardware vendors, software-as-a-service (SaaS) providers,
marketing organizations, and more. Its range of customers includes
Amazon, Apple (iTunes), Microsoft, Yahoo!, ESPN, Ticketmaster,
General Motors, Travelocity, MySpace, Adobe, Verizon wireless, Voice
of America, NASA, and the US Air Force. Akamai estimates it handles
about 25 percent of the world’s Web traffic, over two terabits per second
most of the day. As a result of its daily operations, Akamai needs to map
the Internet, and it can do so from a very unique perspective.

Akamai’s platform is a truly distributed architecture, comprising
over 60,000 servers deployed in about 1,400 datacenters on about 900
networks worldwide. Geographically, these datacenters are in about
650 cities in 76 countries around the world. (See Figures 1 and 2 for
locations.) Akamai does not own any facilities—the company puts its
hardware mostly in public Internet collocation facilities on providers
such as Qwest, Sprint, France Telecom, NTT, Telia, Comcast, Verizon,
or other global backbones, regional providers, and major ISPs. Akamai’s
primary mission is to improve the overall quality of delivery by situating
content, media, and applications delivery capabilities close to the user.

Akamai’s design principles were born alongside the algorithms its
founders developed at MIT, and they rely heavily on the general notion of
mapping. Akamai’s software platform was built from the ground up and



to scale in ways traditional IT systems do
not. Since it’s a truly distributed system,
multiple components operate physically
separate from each other, yet they are
interdependent. Akamai Mapping tackles
the need to map resources to one another
across the network. [1]

Internally to Akamai, a map simply
expresses how two or more groups are
related. Akamai calculates thousands of
maps continuously. This article describes
three major types of mapping that Akamai
performs. The first and most common type
is end-user request mapping. The second
is mapping connections between two
different points on the Internet through a
third point. And the third is mapping the
geographic location of a network address.

End-user request mapping

The mostheavily used map translates
domain name service (DNS) requests for
a resource to network addresses where
the resource can be located. In other
words, when someone requests some Web
content, such as a download or a video, the
response tells the user’s machine which
Akamai server would provide the best
connection. The location of the optimal
server is calculated based on the structure
of the Internet and how it is performing,
the user’s location, where Akamai servers
are located, and how much load exists on
Akamai’s individual servers at the time.

The basic workflow, depicted in
Figure 3, is as follows:

* A user types a website hostname
such as www.nfl.com into their
browser.

* The machine’s operating system
uses DNS to lookup the IP address
for that website.

* The request is redirected to
Akamai, transparent to the user,
when the DNS name www.nfl.com
is aliased to an Akamai hostname.

Cusbo o

Almes Server fel

HTML

Figure 3: DNS Workflow.

* Behind the scenes, Akamai maps
the structure and performance
of the Internet. Akamai’s DNS
responds to the user with a list of
network addresses that will provide
the best performance at that time.

* The user’s computer connects to
the Akamai server address and
downloads NFL content and videos
from a nearby server, usually on
the same ISP used to access the
Internet.

To map requests to resources on
the Internet, Akamai needs to know both
the structure and the characteristics of
the network between any two relevant
points. The first step is to understand the
structure of the Internet from the vantage
points of Akamai’s servers.

For purposes of mapping requests
to resources, Akamai tries to develop
objective observations of every possible
path a particular end user could take in
communicating with an Akamai server.
If, for example, Akamai has servers
located in three different datacenters on
the end user’s ISP, it makes sense to direct

FEATURE

the user to the datacenter that has the best
performance when communicating to the
user’s location.

the
complexity of the problem, Akamai uses

To simplify computational
the notion of a core point on the edge of
the network. Multiple end users often
come into the network through a
particular piece of infrastructure that
acts as a gateway for a group of network
addresses. As an example, all users at a
major corporation may be forwarded
to headquarters before their internal
network touches the Internet, or users
connecting over DSL may all pass
through a specific network node before

their communications reach the public

Internet.
Akamai uses two pieces of
information to map the topological

structure of the network: BGP and
traceroutes.

Border Gateway
Protocol data

BGP, or Border Gateway Protocol,
is a protocol used by routers to identify
where IP addresses exist on the Internet.

The Next Wave = Vol 18 No 32010 9



BGP dictates which way networks will
send traffic with a particular destination,
and it is the underlying mechanism
through which the macroscopic Internet
maintains interconnectivity.

When Akamai deploys to a network
provider, it usually negotiates access
to that network’s BGP data. The data
is obtained through a passive peering
session to receive an un-aggregated view
of the network from one or more of its
routers. Understanding BGP data benefits
the network, because it allows Akamai
to more effectively minimize the amount
of traffic that network must handle, and
hence increase its overall efficiency.

With BGP data from a network,
Akamai obtains a local view of how
the Internet’s IP address space, on the
whole, is
and what paths exist between different
blocks of addresses. This data can change

broken out topologically,

dynamically, as well, so having a direct
feed from the routers in a locality allows
Akamai to rapidly react to those changes.

While BGP serves to provide a good
view on how the Internet is connected, a
much more granular view of the network’s
topology is needed. Akamai’s traceroute
process fills in a much higher level of
detail than the BGP data alone.

Traceroute data

A traceroute is a network probe
between two points that attempts to
identify all the
between those points.
provides a much higher level of detail

infrastructure nodes
A traceroute

than BGP, as BGP only provides coarse
information on connectivity and where
IP addresses should be on the network.
Traceroutes provide a more direct
and detailed way to measure where IP
addresses really are. (See “Globe at a
Glance” for a representation of a set
of traceroutes.) The process is similar

to using MapQuest.com for driving

10 How Akamai Maps the Net

directions between two street addresses to

determine all the streets in between.
Although

between two network locations,

traceroutes operate
the
request must be initiated from one of the
locations, which causes some difficulty.
Conducting traceroutes from just one or
two network locations will not provide a
good sense of the overall interconnectivity
of the network, just as running MapQuest
from Chicago to every major US city will
not reveal any of the roads between, say,
New York and Florida or California and

Oregon.

Because Akamai is deployed in 900
network providers around the world, it can
easily conduct a much deeper look into
the world’s local Internet connectivity.
Akamai also leverages its delivery data to
determine where to target its traceroutes —
Akamai’s commercial services only need
to map where end users are located, so
Akamai more heavily weights network
addresses that have connected to Akamai
at some time in the past. Due to the size
of Akamai’s customer base, however,
it is likely that every active machine on
the Internet has connected to it at some
time— Akamai sees hits from over 300
million unique IP addresses each day, and
over 400 million in three months.

Measuring the network

Once the mapping function takes
into account both BGP and the results of its
traceroutes, it has developed a very good
map of the edges of the network, and what
IP addresses should be considered “core
points,” or specific network locations
beyond which multiple users connect to
the Internet. The next step is measuring
the characteristics of the network, which
occurs on a much higher frequency—
every few seconds.

For each core point, Akamai needs
to identify information about nearby

Akamai datacenters and how well each
datacenter can communicate to the core
points. To do this, Akamai conducts
specific measurements designed to
measure the latency, loss, capacity, and
overall availability of the connection.
For this calculation, Akamai no longer
cares about the structure of the network.
Because Akamai tries to optimize the
quality of delivery, which is dictated
strictly by factors that impact the service
protocol’s operation, the structure of the
network can be ignored. (Note this is not
“Quality of Service (QoS)” because this
is the public Internet; a better term might

be “best available QoS.”)

To optimize a service protocol’s
operation, Akamai models how that
protocol operates. For normal Web
delivery, including HTTP and HTTPS,
there are two major considerations.
First, the network connection must be
somewhat available—high levels of loss
will impact performance, though small
levels will be corrected through the
TCP’s operation. After this, however,
latency is the biggest factor to consider.
The TCP operates through the notion of a
window size, which is how much data can
be in transit before an acknowledgement
is received. If the latency is high, the
acknowledgements will not be received
fast enough, and the overall throughput
will be significantly limited. Throughput
impacts the speed the user sees a Web
page or download, so latency is heavily
weighted for a HTTP or HTTPS “map.”
For streaming media, on the other hand,
the primary communication to the user is
a continuous stream of data. While there
is some interaction between the client and
the server, the stream will begin to look
choppy and low-quality if too much loss
occurs. As a result, for its video “maps,”
Akamai optimizes for lower loss versus
latency.



Core Points
(lots)

1400 Akamai
datacenters

Once Akamai measures the latency
and loss of the network between each
nearby datacenter and the core point, it
treats the problem as a bipartite graph
problem.

As shown in Figure 4, the two groups
on the graph are Akamai datacenters
on the left and core points on the right.
Between each node on the left and each
node on the right, a cost is assigned based
on the characteristics of the protocol to be
optimized—for example, a combination
of availability, loss, and latency
specific to the application, including
historically expected values and passive
measurements from previously delivered
traffic. The costs are optimized between
servers and core points, allowing a high-
level mapping of the best and second-best
datacenter for a given block of end-user

IP space, represented by a core point.
Because it would be inefficient
to randomly use servers within a given
datacenter, and Akamai must account
for other factors such as the load on a
given server and the limits on storage

Figure 4:
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The basic Akamai mapping problem is a bipartite graph optimization, as
shown. End users, aggregated behind “Core Points” on the right, are
mapped to the best Akamai datacenter, on the left, based on real-world

network conditions.

and processing for each machine, Akamai
conducts a secondary calculation local
to regions of the Internet. Regions of the
Internet are used because the previous
calculations should have identified what
subset of the Internet the core points and
datacenters reside in. The use of smaller,
region-specific calculations reduces the
computational complexity and hence the
turnaround time of recalculations.

This secondary calculation uses a
bipartite graph model as well, but maps
more information. Taking into account
the optimal mappings of requests for
particular applications between a core
point and datacenters, information on
existing load, expected load (based on
DNS responses already provided), and
historic load variation, this calculation’s
results are overlaid with a consistent
hashing technique.

For Web content, Akamai caches
data on servers, and each server only
has a limited storage capacity. Given
that Akamai delivers tens of thousands
of websites, it is inefficient to use every
server indiscriminately for caching
every site. Thus, the notion of consistent
hashing for this purpose was developed
at MIT as part of the algorithms devised
before Akamai’s inception [2]. Each
customer is associated with a “bucket” of
content, referenced via a hash index. In
each datacenter, a minimum number of
machines are dedicated to handling that
hash, to minimize the impact on overall
storage resources in the datacenter. When
load escalates, however, new servers are

recruited consistently as needed, and

released consistently when load drops.
Thus, storage resources are used more
only when load escalates and overall
efficiency of scale exists, even in a world
of unpredictable supply and demand.
that the
mapping processes, which run separate

Consistent hashing means
from the delivery servers, can operate
without knowing how many “buckets”
exist—hashes are consistently arrived at
regardless of the size of the space being
mapped using the hash.

Akamai uses variations of this

mapping mechanism very heavily
for a variety of purposes beyond just
the mapping of end users to Akamai
machines. For example, some Akamai
customers host their static websites on
distributed persistent storage facilities
Akamai has deployed around the world.
Mapping allows Akamai to load-balance
and optimize the performance between
multiple storage centers when an “edge”
Other
edge servers forward requests through a
hierarchy of machines, and the various
levels of the hierarchy use maps to

server needs to fetch content.

automatically identify the next node in
the request chain. Live streaming feeds
are replicated through the Internet to
reduce packet loss, but the selection of
replication nodes is done using a similar
mapping mechanism to optimize reliable
streaming media delivery. Akamai allows
customers to run on its platform Java
applications, which have their own unique
load balancing parameters and timing
considerations fed into their maps. Some
of Akamai’s customers even use a similar

The Next Wave = Vol 18 No 3 = 2010 11



Akamai
Intermediates

mapping mechanism to load-balance
their own datacenters using their own
combination of criteria, allowing them
to not only load balance but optimize
performance, cost, and define how they
want failover scenarios to be handled, as
well.

Mapping through
intermediate nodes

Traffic on the US highway system
is unpredictable, and it can change at
any minute on any road. Sending a
delivery by truck from one city in the
US to another can be done over a variety
of routes, but picking the best route is
not always straightforward. To provide
the best possible speed of delivery, the
sender might look at MapQuest.com to
determine an initial delivery path, and
then pick two or three alternate paths
using different highways and possibly
different cities as intermediate stopping
points to the destination. Multiple copies
of the delivery can be sent over each path,
and whichever arrives first is delivered.
This concept of improving delivery speed
through taking multiple, possibly faster,
indirect routes is the same concept Akamai

12 How Akamai Maps the Net

Akamai edge

uses to speed long-haul communications
on the Internet.

In Akamai’s early days, some of
the network engineers noticed that it
was very difficult to reliably connect to
some remote machines for some manual
diagnostic checks. For example, it was
far easier to connect to machines in South
Korea from another Akamai machine
in Japan, versus directly from the US.
This basic approach uses intermediates
for optimizing performance, and has
a uniquely interesting variation to the
traditional Akamai mapping problem: it
optimizes the path between two points by
using a third point as an intermediate.

For this technique, the mapping
model switches from being a bipartite
graph to being a tripartite graph. See
Figure 5 for a visual representation. As
an example, consider Taleo, an Akamai
customer that provides Software as a
Service. Their Web application is secure
and highly dynamic, and they primarily
use Akamai to make performance of the
site consistently fast worldwide. Using
Akamai’s technique of mapping through
intermediate nodes helps them maintain
performance without distributing their

Figure 5:

To map through intermediate nodes, Akamai
calculates a more complex graph, where
paths between Akamai servers, on the right,
and some central infrastructure, on the left,
are optimized by finding the best intermediate
nodes to forward traffic through.

application and database infrastructure
geographically.

End users make a request for
Taleo’s application, and they connect to
the best Akamai server, as determined
by the results of the previous mapping
calculation. This Akamai server, however,
may be located in Australia, and it needs
to access Taleo’s central infrastructure,
which is located in another continent.
The three parts of the graph calculation
for this mapping are Taleo’s central
infrastructure, Akamai’s edge datacenter
(in this case, the example in Australia),
and a set of Akamai nodes that should be
considered as intermediates to improve
performance and reliability.

The set of intermediates is chosen
using a calculation that relies on global
BGP data.
communications are dictated by BGP,

Since wide-area network

a direct connection will travel across
the path BGP has in place already. BGP
does not accommodate performance,
however, and in many cases provides
a sub-optimal path across the Internet.
The only way around is to “trick” BGP
by forwarding communications between
different network

addresses, causing



the communications to take a different
network path in the process. Akamai
looks at the possible nodes it can use as
intermediates, chosen from its global
population of 1,400 datacenters, and picks
nodes that are likely to provide a diversity
of paths in comparison to the existing
direct BGP path, and which may also
provide lower-latency communications
between the two endpoints. As part of its
continuous mapping processes, Akamai
measures the performance between its
possible intermediate nodes and Taleo’s
infrastructure, between the intermediate
nodes and the Akamai edge datacenter,
and between the endpoints directly.

The basic principle is to choose the
best set of intermediates that provides the
lowest overall latency for endpoint-to-
endpoint communications, if possible. In
many cases, the performance of the direct
path is fine, but in many other cases, using
an intermediate can provide dramatic
performance improvements, sometimes
more than two or three times faster than

Last Updated: 07/21 05:38am GHT

the direct route. Using intermediates can
also bypass network routing problems,
which BGP does not always react to
effectively.

Since this technique does not rely
on caching to operate, Akamai has been
able to provide optimizations to both TCP
traffic and raw IP communications. Each
optimization has its own criteria, and
these all are built into custom “flavors” of

mapping.

Mapping data

In addition to mapping its services,
Akamai conducts mapping on data. A
good example is Akamai’s commercial
IP geolocation service, which provides
geolocation and other information for
IP addresses. Due to the nature of the
information desired, different data is
collected and processed than in other
Akamai techniques.

Akamai looks at all available
sources of possible geolocation data for

inference. The first step in geolocation

FEATURE

mapping is to take into account the
structure of the network.

First, using its BGP feeds, Akamai
maps the breakdown of IP address blocks
and the associated registry information,
which is not too accurate in general, but
which can be useful if no other information
also examines

is available. Akamai

registries to determine further sub-
divisions in the network space implicit
in how blocks have been registered
and assigned. Akamai then performs
traceroute queries, which are targeted
at identifying the path to each portion
of the blocks identified on the Internet,
conducted over a variety of periodicities
and different levels of coverage of
IP space. DNS reverse-lookups of IP
addresses are added to the data available,
sometimes indicating geographic
information on the path identified through
a traceroute to an IP address, or relating to
the IP address itself. The data is combined
with manual information continuously

entered by Akamai’s interactions with

[ Code Red Infections
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Graph showing aggregate level of observed activity on the first few days of the Code Red
virus outbreak in 2001. Akamai observed the surge connection attempts from infected
machines from around the world.

The Next Wave = Vol 18 No 3= 2010 13



users on the system, with the networks its
servers are deployed in, and from ongoing
manual investigations of geolocation
data. Lastly, Akamai leverages some
passive TCP latency data extracted from
real-world interactions between end user
IP addresses and its edge servers. The end
result is derived by applying heuristics
to all of these sources to determine an
accurate geolocation product at both the
country and city level.

Akamai is currently conducting
research on using passively observed
latency measurements in larger volume,
higher fidelity, and with greater rigor
to improve the overall accuracy of

geolocation.
The

provides two other interesting pieces of

data about an address that are determined

geolocation  service also

via alternate ways of “mapping” the
network: throughput data and proxy
data. Whenever Akamai delivers a piece
of content to an end user, be it a picture
from a news site, an antivirus patch, or a
video downloaded from iTunes, Akamai
records the amount of time taken to
download the content. Using this passive
observation, Akamai can very accurately
model the throughput and connection
speed available at that IP address on the
network, and provides the result. While
not strictly a “map,” this modeling is
more a mapping of characteristics onto
the IP address space, providing a greater
level of detail.

Proxy data is also inferred using
passively collected observations from
the hundreds of billions of transactions
Akamai serves each day. Specific to
geolocation, looks for the
presence of a particular HTTP header

Akamai

that is passed by well-configured proxies,
X-Forwarded-For:.This header indicates
that the IP address issuing the HTTP
request is doing so on behalf of another
IP address. If the identified secondary IP

14 How Akamai Maps the Net

address in the header is for a public IP
address, then that IP is flagged as a proxy.

Mapping other
characteristics of the
network: Attacks, proxies,
performance

To track the spread of certain
viruses across the network, Akamai has
deployed a “darknet” of servers in about
200 different networks that passively
observes attempts to connect to it. Using
the darknet, Akamai can passively
observe the spread of different types of
virus or worm outbreaks. To heighten
the awareness of intrusions specifically
targeting a specific organization, not
the Internet as a whole, Akamai also
models the baseline level of virus and
worm intrusions as “background noise”
that should not be perceived as targeted
intrusion attacks.

Akamai is conducting research
into determining more information about
proxies, as well. Outside of current
techniques, Akamai is looking into ways
of modeling what appear to be proxies
from other characteristics, such as an
abnormal amount of traffic over time, or
the number of unique entities identified

behind an IP address.

Akamai possesses other information
that may be useful for passive analysis
of the Internet’s IP space. Through the
sheer volume of normal Internet traffic it
delivers, estimated to be about 25 percent
of the Web, Akamai can model what parts
of the Internet appear to have certain types
of activity patterns. For example, some
parts of the world may be active at certain
times of day, and may have software
installed that automatically identifies
the time zone of the user’s machine or
localized software in place. Some parts of
the Internet may also have very specific
interest in categories of content over
time, such as online shopping, media,

or music downloads. Akamai provides
some aggregated views into this data,
an example of which is shown in Figure
7. In this view, activity across about
100 different news-related websites is
aggregated, allowing users to determine
if a big news story has hit—or allowing
a news website to determine if its traffic
fluctuations are in line with the rest of the
industry.

Akamai provides some customers
with a specific view of what Akamai sees
with respect to symptoms of activity on
the network relative to what that customer
sees. As an example of the type of data
available, Akamai can measure if hourly
performance to core points in a particular
geography is changing as the result of a
network-based or physical event, such
as a natural disaster, and how it impacts
performance. It can also be used to
determine if a local view of what is
coming in and out of network gateways,
and the performance thereof, is similar
to what’s happening in the rest of the
Internet, or just a localized issue.

Summary

The dynamic nature of Akamai’s
scalable and flexible distributed systems
design relies heavily on, and benefits
greatly from, the rigorous efforts invested
in network mapping. Akamai’s notion of
network mapping is relatively broad, and
is crafted into several specific methods
for real-time service operation or long-
term data analysis. Akamai’s network
presence and access to traffic provides a
very unique vantage point to understand
the Internet and how it is operating;
these examples provide a sampling of
how Akamai takes advantage of this
information for very specific purposes.
Whatever shapes the Internet morphs into
in the future, you can bet that Akamai
will be present and will have new ways of
mapping it. (4
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Figure 7:

Snapshot of Akamai’'s Net Usage Index for News sites, providing a view into
the overall usage of about 100 of the Web'’s top news sites.
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Introduction

Network monitoring and inference is an
increasingly important component of intelligence
gathering, from mapping the structure of the
Internet, to discovering clandestine social networks,
as well to information fusion in wireless sensor
networks. Indeed, several international conferences
are dedicated to the nascent field of network
science. This article considers a particularly salient
aspect of network science that revolves around
large-scale distributed sources of data and their
storage, transmission, and retrieval. The task of
transmitting information from one point to another
is a common and well-understood exercise. But the
problem of efficiently sharing information from
and among a vast number of distributed nodes
remains a great challenge, primarily because we
do not yet have well developed theories and tools
for distributed signal processing, communications,
and information theory in large-scale networked
systems.

The problem is illustrated by a simple
example. Consider a network of n nodes, each
having a piece of information or data x;,j=1,...n.

16 Compressed Sensing and Network Monitoring

These data could be files to be shared, or simply
scalar values corresponding to node attributes or
sensor measurements. Let us assume that each x;
is a scalar quantity for the sake of this illustration.
Collectively these data x=[xy,...,x,]7, arranged in
a vector, are called networked data to emphasize
both the distributed nature of the data and the
fact that they may be shared over the underlying
communications infrastructure of the network. The
networked data vector may be very large; n may be a
thousand, a million, or more. Thus, even the process
of gathering x at a single point is daunting (requiring
n communications at least). Yet this global sense
of the networked data is crucial in applications
ranging from network security to wireless sensing.
Suppose, however, that it is possible to construct
a highly compressed version of x, efficiently and
in a decentralized fashion. This would offer many
obvious benefits, provided that the compressed
version could be processed to recover x to within a
reasonable accuracy.

There are several decentralized compression
strategies that could be utilized. One possibility
is that the correlations between data at different
nodes are known a priori. Then distributed source



coding techniques, such as Slepian-Wolf coding,
can be used to design compression schemes without
collaboration between nodes. (See [1] and the
references therein for an excellent overview of such
approaches.) Unfortunately, in many applications,
prior knowledge of the precise correlations in
the data is unavailable, making it difficult or
impossible to apply such distributed source coding
techniques. This situation motivates collaborative,
in-network processing and compression, in which
unknown correlations and dependencies between
the networked data can be learned and exploited
by exchanging information between network
nodes. However, the design and implementation of
effective collaborative processing algorithms can
be quite challenging, since they too rely on some
prior knowledge of the anticipated correlations and
depend on somewhat sophisticated communications
and node processing capabilities.

This article describes a very different approach
to the decentralized compression of networked data.
Specifically, consider a compression of the form
y = Ax, where A = {A, } is a k x n “sensing” ma-
trix with far fewer rows than columns (i.e., k € n).
The compressed data vector y is k x 1, and there-
fore is much easier to store, transmit, and retrieve
compared to the uncompressed networked data x.
The theory of compressed sensing guarantees that,
for certain matrices A, which are non-adaptive and
often quite unstructured, x can be accurately recov-
ered from y whenever x itself is compressible in
some domain (e.g.,frequency, wavelet, time) [2]-[5].

To carry the illustration further, and to
motivate the approaches proposed in this article,
let us look at a very concrete example. Suppose
that most of the network nodes have the same
nominal data value, but the few remaining nodes
have different values. For instance, the values could
correspond to security statistics or sensor readings
at each node. The networked data vector in this case
is mostly constant, except for a few deviations in
certain locations. This minority may be of most
interest in security or sensing applications. Clearly
X is quite compressible; the nominal value plus the
locations and values of the few deviant cases suffice
for its specification.

Consider a few possible situations in this
networked data compression problem. First, if
the nominal value were known to all nodes, then
the desired compression is accomplished simply

by the deviant nodes sending that notification.
Second, if the nominal value were not known, but
the deviant cases were assumed to be isolated, then
the nodes could simply compare their own values
to those of their nearest neighbors to determine
the nominal value and any deviation of their own.
Again, notifications from the deviant nodes would
provide the desired compression. There is a third,
more general, scenario in which such simple local
processing schemes can break down. Suppose that
the nominal value is unknown to the nodes a priori,
and that the deviant cases could be isolated or
clustered. Since the deviant nodes may be clustered
together, simply comparing values between
neighboring nodes may not reveal them all, and
perhaps not even the majority of them, depending
on the extent of clustering. Indeed, distributed
processing schemes in general are difficult to design
without prior knowledge of the anticipated relations
among data at neighboring nodes. This serves as a
motivation for the theory and methods discussed
here.

Compressed sensing offers an alternative
measurement approach that does not require any
specific prior signal knowledge and is an effective
(and efficient) strategy in each of the situations
described above. The values of all nodes can
be recovered from the compressed data y = Ax,
provided its size k is proportional to the number of
deviant nodes. As we shall see, y can be efficiently
computed in a distributed manner, and by virtue of its
small size, it is naturally easy to store and transmit.
In fact, in certain wireless network applications (see
Wireless Sensor Networks in the Networked Data
Compression in Action section of this article for
details), y can be computed in the air itself, rather
than in silicon! Thus, compressed sensing offers
two highly desirable features for networked data
analysis. The method is decentralized, meaning that
distributed data can be encoded without a central
controller, and universal, in the sense that sampling
does not require a priori knowledge or assumptions
about the data. For these reasons, the advantages of
compressed sensing have already caught on in the
research community, as evidenced by several recent
works [6]-[10].

Compressed sensing basics

The theory of compressed sensing (CS)
extends traditional sensing and sampling systems to
a much broader class of signals. According to CS
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theory, any sufficiently compressible signal can be
accurately recovered from a small number of non-
adaptive, randomized linear projection samples. For
example, suppose that x € R" is m-sparse (i.e., it has
no more than m nonzero entries) where m is much
smaller than the signal length n. Sparse vectors are
very compressible, since they can be completely
described by the locations and amplitudes of the
non-zero entries. Rather than sampling each element
of x, CS directs us to first precondition the signal by
operating on it with a diversifying matrix, yielding
a signal whose entries are mixtures of the non-zero
entries of the original signal. The resulting signal is
then sampled k times to obtain a low-dimensional
vector of observations. Overall, the acquisition
process can be described by the observation
model y = Ax + € , where the matrix A is a k x
n CS matrix that describes the joint operations of
preconditioning and subsampling, and € represents
errors due to noise or other perturbations. The main
results of CS theory have established that if the
number of CS samples is a small integer multiple
greater than the number of non-zero entries in X,
then these samples sufficiently “encode” the salient
information in the sparse signal and an accurate
reconstruction from y is possible. These results
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Figure 1: A simple reconstruction example on a network of n = 16 nodes. One
distinguished sensor observes a positive value while the remaining n — 1 observe zero.
The task is to identify which sensor is different by using as few observations as possible.
In the CS approach, the data are projected onto random vectors, such as those depicted

in the second column (where nodes indicated in black multiply their data value by —1

and those in white by +1). The third column shows that about n/2 hypothesis sensors are
consistent with each random projection observation, but the number of hypotheses that are
simultaneously consistent with all observations (shown in the fourth column) decreases
exponentially with the number of observations. The random projection observations are
approximately performing binary bisections of the hypothesis space, and only about log n
observations are needed to determine which sensor reads the nonzero value.

18 Compressed Sensing and Network Monitoring

are very promising because at least 2m pieces of
information (the location and amplitude of each
nonzero entry) are generally required to describe
any m-sparse signal, and CS is an effective way to
obtain this information in a simple, non-adaptive
manner. The next few subsections explain, in some
detail, how this is accomplished.

Compressed sensing for networked data

To illustrate the CS random projection encod-
ing and reconstruction ideas, consider the simple
reconstruction example (Figure 1). Suppose that
in a network of n sensors, only one of the sensors
is observing some positive value, while the rest of
the sensors observe zero. The goal is to identify
which sensor measures the nonzero value using a
minimum number of observations. Consider mak-
ing random projection observations of the data,
where each observation is the projection of the sen-
sor readings onto a random vector having entries +1
each with probability 1/2. The value of each obser-
vation, along with knowledge of the random vector
onto which the data was projected, can be used to
identify a set of about n/2 hypothesis sensors that
are consistent with that particular observation. The
estimate of the anomalous sensor given k observa-
tions is simply the intersection of the hypothesis
sets consistent with each of the k observations. It
is easy to see that, on average, about log n observa-
tions are required before the correct (unique) sen-
sor is identified. Define the £y quasi-norm ||z|o to
be equal to the number of nonzero entries in the
vector z. Then this simple procedure can be thought
of as the solution of the optimization problem

arg min|| z||o subject to y = Az. (1)

Encoding requirements

Suppose that for some observation matrix A
there is a nonzero m-sparse signal x such that the
observations y = Ax = 0. Recovery of x is impos-
sible in this setting, since the observations provide
no information about the specific signal being ob-
served. Matrices that are resilient to such ambigui-
ties are those that satisfy the Restricted Isometry
Property (RIP) [2], [11], [12]. Essentially, a k x n
sensing matrix A with unit-normed rows (i.e., >/
Az;=1for i = 1,2,...,k) is said to satisfy a RIP of
order s whenever || Ax||3 = k|| x||} /n holds simul-
taneously for all s-sparse vectors x € R”. The RIP is
so-named because it describes matrices that impose



near-isometry (approximate length preservation)
on a restricted set of subspaces (the subspaces of
s-sparse vectors). In simpler terms, a matrix satis-
fies RIP if and only if vectors that are sufficiently
sparse are not in the null space of the matrix.

In practice, sensing matrices that satisfy the
RIP are easy to generate. It has been established that
k x n matrices whose entries are independent and
identically distributed realizations of certain zero-
mean random variables with variance 1/n satisfy
a RIP with very high probability when k = const *
log n - m [2], [3], [13]. Physical limitations of real
sensing systems motivate the unit-norm restric-
tion on the rows of A, which essentially limits the
amount of “sampling energy” allotted to each ob-
servation.

Decoding: Algorithms and bounds

Compressed sensing is a form of subsampling,
so aliasing is present, and needs to be accounted for
in the reconstruction process. The same compressed
data could be generated by many n-dimensional
vectors, but the RIP implies that only one of these
is sparse. This might seem to require that any
reconstruction algorithm must exhaustively search
all sparse vectors, but fortunately the process is
much more tractable. Given a vector of (noise-free)
observations y = Ax, the unknown m-sparse signal
x can be recovered exactly as the unique solution to

arg mZin|| z||1 subject to y = Az, 2

where |[|z|[1 = 2" |z denotes the ¢i-norm,
provided A satisfies RIP of order 2m [12]. The
recovery procedure can be cast as a linear program,
so solution methods are tractable even when # is
very large.

Compressed sensing remains quite effective
even when the samples are corrupted by additive
noise, which is important from a practical point
of view since any real system will be subjected
to measurement inaccuracies. A variety of
reconstruction methods have been proposed to
recover (an approximation of) x when observations
are corrupted by noise. For example, estimates X
can be obtained as the solutions of either

arg min || z||1 subject to [| A7 (y-Az) [0 <X, (3)

where ||z o0 = max,_, , |Zi| [5], or the penalized
least squares minimization

arg mjn {||y-Az]|3+ 1|21l o} @

as proposed in [4], for appropriately chosen
regularization constants A, and A, that each
depend on the noise variance. In either case, the
reconstruction error E [|| x-X||3/n] decays at a rate of
(m log n/k). In practice, the optimization (3) can be
solved by a linear program, while (4) is often solved
by convex relaxation—replacing the £y penalty with
the ¢, penalty. The appeal of CS is readily apparent
from the error rate which (ignoring the logarithmic
factor) is proportional to m/k, the variance of an
estimator of m parameters from k observations. In
other words, CS is able to both identify the locations
and estimate the amplitudes of the non-zero entries
without any specific prior knowledge about the
signal except the assumption of sparsity.

Transform domain sparsity

Suppose the observed signal x is not sparse,
but instead a suitably transformed version is.
Specifically, let T be a transformation matrix, and
assume that 6 = Tx is sparse. The CS observations
can be written as y = Ax = AT~!0. If A is a random
CS matrix satisfying the RIP, then in many cases
so is the product matrix AT-! [13]. Consequently,
the CS observation process does not require prior
knowledge of the domain in which the data are
compressible. The sparse vector 6 (and hence x)
can be accurately recovered from y using the
reconstruction techniques described above. For
example, in the noiseless setting one can solve

6 = arg min||z||; subject to y = AT"'z, 3)

to obtain an exact reconstruction of the transform
coefficients of x. Note that, while the samples do
not require selection of an appropriate sparsifying
transform, the reconstruction does.

Often, signals of interest will not be exactly
sparse, but instead most of the energy is concentrated
on a relatively small set of entries while the
remaining entries are very small. The degree of
effective sparsity of such signals can be quantified
with respect to a given basis. Formally, for a signal
x let x* be the approximation of x formed by re-
taining the s coefficients having largest magnitude
in the transformed representation & = Tx. Then x
is called a-compressible if the approximation error
obeys
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< const + 572¢ (6)

for some a = a(x,T) > 0. This model describes,
for example, signals whose ordered (transformed)
coefficient amplitudes exhibit power-law decay.
Such behavior is associated with images that are
smooth or have bounded variation [3], [11], and is
often observed in the wavelet coefficients of natural
images. In this setting, CS reconstruction techniques
can again be applied to obtain an estimate of the
transformed coefficients directly. For example, the
solutions of optimizations analogous to (3) and (4)
yield estimates whose estimation error decays at the
rate (log n/k)?*2e+1 quantifying the simultaneous
balancing of the errors due to approximation and
estimation [4]. This result guarantees that even
when signals are only approximately sparse,
consistent estimation is still possible.

Sparsifying networked data

Compressed sensing can be very effective
when x is sparse or highly compressible in a certain
basis or dictionary. But, while transform-based
compression is well-developed in traditional signal
and image processing domains, the understanding
of sparsifying/compressing bases for networked
data is far from complete. There are, however, a
few promising new approaches to the design of
transforms for networked data, some of which are
described below.

Spatial compression

Suppose a wireless sensor network is
deployed to monitor a certain spatially-varying
phenomenon, such as temperature, light, or
moisture. The physical field being measured can
be viewed as a signal or image with a degree of
spatial correlation or smoothness. If the sensors
are geographically placed in a uniform fashion,

20 Compressed Sensing and Network Monitoring

Figure 2: Sparsifying transformation techniques
depend on network topologies. The smoothly varying
field in (a) is monitored by a network of wireless
sensors deployed uniformly over the region, and
standard transform techniques can be used to sparsify
the networked data. For more abstract topologies, graph
wavelets can be effective. In (b), the graph (Haar)
wavelet coefficient at the location of the black node and
scale three is given by the difference of the average data
values at the nodes in the red and blue regions.

such as in Figure 2(a), then sparsifying transforms
may be readily borrowed from traditional signal
processing. In these settings, the sensor locations
can be viewed as sampling locations and tools like
the discrete Fourier transform (DFT) or discrete
wavelet transform (DWT) may be used to sparsify
the networked data. In more general settings,
wavelet techniques can be extended to also handle
nonuniform distribution of sensors [14].

Graph wavelets

Standard signal transforms cannot be applied
in more general situations. For example, many
network monitoring applications rely on the analysis
of traffic levels at the network nodes. Changes in
the behavior of traffic levels can be indicative of
variations in network usage, component failures, or
malicious activities. There are strong correlations
between traffic levels at different nodes, but the
topology and routing affect the nature of these
relationships in complex ways. Graph wavelets,
developed with these challenges in mind, adapt the
design principles of the DWT to arbitrary networked
data [15].

To understand graph wavelets, it is useful
to first consider the Haar wavelet transform,
which is the simplest form of DWT. The Haar
wavelet coefficients are essentially obtained as
digital differences of the data at different scales of
aggregation. The coefficients at the first scale are
differences between neighboring data points, and
those at subsequent spatial scales are computed
by first aggregating data in neighborhoods (dyadic
intervals in one dimension and square regions in
two dimensions) and then computing differences
between neighboring aggregations.

Graph wavelets are a generalization of this
construction, where the number of hops between
nodes in a network provides a natural distance



measure that can be used to define neighborhoods.
The size of each neighborhood (with radius defined
by the number of hops) provides a natural measure
of scale, with smaller sizes corresponding to finer
spatial analysis of the networked data. Graph
wavelet coefficients are then defined by aggregating
data at different scales, and computing differences
between aggregated data, as shown in Figure 2(b).
Further details and generalizations of this can be
found in [15].

Diffusion wavelets

Diffusion wavelets provide an alternative
approach to constructing amulti-scale representation
for networked data. Unlike graph wavelets, which
produce an overcomplete dictionary, diffusion
wavelets produce an orthonormal basis tailored to
a specific network by analyzing eigenvectors of a
diffusion matrix derived from the network adjacency
matrix (hence the name “diffusion wavelets”). The
resulting basis vectors are generally localized to
neighborhoods of varying size and may also lead
to a sparsifying representation of networked data.
A thorough treatment of this topic can be found in
[16].

One example of sparsification using diffusion
wavelets is shown in Figure 3, where the node
data correspond to traffic rates through routers
in a computer network. There are several highly
localized regions of activity, while most of the
remaining network exhibits only moderate levels of
traffic. The traffic data are sparsely represented in
the diffusion wavelet basis, and a small number of
coefficients can provide an accurate estimate of the
actual traffic patterns.

Networked data compression
in action

This section describes two techniques for
obtaining projections of networked data onto
general vectors, which can be thought of as the
rows of the sensing matrix A. The first approach
described below assumes that the network is any
general multihop network. This model could
explain, for example, wireless sensor networks,
wired local area networks, or even portions of the
Internet. In the multihop setting, the projections can
be computed and delivered to every subset of nodes
in the network using gossip/consensus techniques,
or they might be delivered to a single point using
clustering and aggregation. The second, more

specific, approach described
below is motivated by many
wireless sensor networking
applications in which explicit
routing information is difficult
to obtain and maintain in
real time. In this setting,
sensors contribute their
measurements in a joint fashion
by simultaneous  wireless
transmissions to a distant
processing location, and the
observations are accumulated
and processed at that (single)
destination point.

(©2008 IEEE)
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Compressed sensing for
networked data storage
and retrieval

In general multihop
networks, two simple steps can
be used for the decentralized
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computation and distribution
of each CS observation of the
formy,= X/ A x,i=1L..k

LjTp
Step 1: Each of the n sensors, j = 1,...,n, locally
computes the term A, ; x; by multiplying its data with
the corresponding element of the sensing matrix.
The sensing matrix can be generated in a distributed
fashion by letting each node locally generate a
realization of A,; using a pseudo-random number
generator seeded with its identifier. (In this example,
the integers j = 1,...,n serve as the identifiers.)
Given the identifiers of the nodes, the destination
node(s) can also easily generate the random vectors
{Ai,j}.k | for each sensor j = 1,...,n.

i=

Step 2: The local terms A, ;x; are simultaneously
aggregated and distributed across the network using
randomized gossip, which is a simple iterative
decentralized algorithm for computing linear
functions such as y,=>7 A,-‘jxj (see Figure 4).
Note that gossip algorithms are highly resilient to
node failures because: (i) each node only exchanges
information with its immediate neighbors, and (ii)
when they terminate, the value of y; is available at
every node in the network.

Since the above procedure ensures that the
networked data projections are known at every
node, a user can query any node in the network and
compute X via one of the reconstruction methods

Figure 3:

An illustration of the
compressibility of spatially
correlated networked data
using diffusion wavelets.
The actual networked data
shown in (a) are not sparse,
but can be represented with
a small number of diffusion
wavelet coefficients, as
seen in (b).
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outlined in the Compressed Sensing Basics section.
Further, this can be quite an efficient procedure in
many scenarios. For example, in networks with
power-law degree distributions such as the Internet,
an optimized gossip algorithm uses on the order of
kn transmissions to compute k CS observations [17],
generally k < n. So this is much more efficient than
exhaustively exchanging raw data values, which
would take about n? transmissions. Of course, if
the location of the node to be queried is fixed a
priori—and if the network provides reliable routing
service—then it may be more efficient to replace
gossip computation with aggregation up a spanning
tree or around a cycle. For more on using gossip
algorithms to compute/distribute compressed data
in multihop networks, see [7].

Compressed sensing in wireless sensor
networks

A typical wireless sensor network, as in Figure
5, consists of a large number of small, inexpensive
wireless sensors, spatially distributed over a region
of interest that can sense the physical environment
in a variety of modalities. The essential task in
many applications of sensor networks is to extract
some relevant information from distributed data and
then wirelessly deliver it to a distant destination,
called the fusion center (FC). While this task can be
accomplished in a number of ways, one particularly
attractive technique corresponds to delivering
random projections of the sensor networked data
to the FC by exploiting recent results on uncoded
(analog) coherent transmission schemes in wireless
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Figure 4: Randomized gossip: (a) depicts one
iteration, in which the color of a node corresponds to

its local value. To begin, the network is initialized to a
state where each node has a value x(0), i = 1,...,n. Then
in an iterative, asynchronous fashion, a random node a
“activates” and chooses one of its neighbors b at random.
The two nodes then “gossip” by exchanging their values
x,(t) and x,(1), or in the CS setting the values multiplied
by pseudo-random numbers, and perform the update

X (t+ 1) = x,(t + 1) < (x (1) + x,(£))/2, while the data at
all the other nodes remains unchanged. In (b), we have
an example network of 100 nodes with: (i) random initial
values (left), (ii) after each node has communicated five
times with each of its neighbors (middle), and (iii) after
each node has communicated 50 times with each of its
neighbors (right). It can be shown that for this simple
procedure, x(f) converges to the average of the initial
values, 1/n 3" _, x,(0), at every node in the network as

t tends to infinity.

sensor networks [ 18]—[21]. The proposed distributed
communication architecture —introduced in [6], [8],
and refined in [22]—requires only one (network)
transmission per random projection and is based
on the notion of so-called “matched source-channel
communication” [20], [21]. Here, the CS projection
observations are simultaneously calculated (by the
superposition of radio waves) and communicated
using amplitude-modulated coherent transmissions
of randomly weighted sensed values directly from
the sensor nodes to the FC via the air interface.
Algorithmically, sensor nodes sequentially perform
the following steps in order to communicate k
random projections of the networked data to the FC:

Step 1: Each of the n sensors locally draws
k elements of the random projection vectors
{Ai‘j k_, by using its network address as the seed
of a pseudo-random number generator. Given the
network addresses of the nodes, the FC can also
easily reconstruct the random vectors {Ai‘j b

Step 2: The sensor at location j multiplies its

measurement x; with {Ai’j}{;l to obtain a k-tuple

v, = (Aljxj,...,Akyj xj)T,jzl,...,n, @)

and all the nodes coherently transmit their respective
v,’s in an analog fashion over the network-to-FC
air interface using k transmissions. Because of the
additive nature of radio waves, the corresponding
received signal at the FC at the end of the k-th
transmission is given by



yzznlvj+€:Ax+€, ®)
=

where € is the noise generated by the communication
receiver circuitry of the FC. The steps above
correspond to a completely decentralized way of
delivering k random projections of the networked
data to the FC by employing k (network)
transmissions. The final estimate X can be computed
at the FC via any of the methods outlined earlier.
As noted earlier, the main advantage of using this
approach for computing random projections is that
it can be implemented without any complex routing
information and as a result might be a more suitable
and scalable option in many sensor networking
applications.

Conclusions and extensions

This article has described how compressed
sensing techniques could be utilized to reconstruct
sparse or compressible networked data in a
variety of practical settings, including general
multihop networks and wireless sensor networks.
Compressed sensing provides two key features,
universal sampling and decentralized encoding,
making it a promising new paradigm for networked
data analysis. The focus here was primarily on
managing resources during the encoding process,
but it is important to note that the decoding step
also poses a significant challenge. Indeed, the study
of efficient decoding algorithms remains at the
forefront of current research [23]-[25].

Inaddition, specialized measurement matrices,
such as those resulting from Toeplitz-structured
matrices [26] and the incoherent basis sampling
methods described in [27], lead to significant
reductions in the complexity of convex decoding
methods. Fortunately, the sampling matrices
inherent to these methods can be easily implemented
using the network projection approaches described
above. For example, Toeplitz-structured CS
matrices naturally result when each node uses the
same random number generation scheme and seed
value, in which each node advances its own random
sequence by its unique (integer) identifier at
initialization. Similarly, random samples from any
orthonormal basis (the observation model described
in [27]) can easily be obtained in the settings
described above if each node is preloaded with its
weights for each basis element in the corresponding
orthonormal transformation matrix. For each

Sensor network monitoring river water

(©2008 IEEE)
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Figure 5: An illustration of a wireless sensor network and fusion center.

A number of sensor nodes monitor the river water for various forms of
contamination and periodically report their findings over the air to the fusion
center. CS projection observations are obtained by each sensor transmitting a
sinusoid with amplitude given by the product of the sensor measurement and
a pseudo-random weight. When the transmissions arrive in phase at the fusion
center, the amplitude of the resulting received waveform is the sum of the

component wave amplitudes.

observation, the requesting node (or fusion center)
broadcasts a random integer between 1 and n to the
nodes to specify which transform coefficient from
the predetermined basis should be obtained, and the
projection is delivered using any suitable method
described above.

Finally, it is worth noting that matrices
satisfying the RIP also approximately preserve
additional geometrical structure on subspaces of
sparse vectors, such as angles and inner products,
as shown in [28]. A useful consequence of this
result is that an ensemble of CS observations can
be “data mined” for events of interest [29], [30].
For example, consider a network whose data may
contain an anomaly that originated at one of m
candidate nodes. An ensemble of CS observations
of the networked data, collected without any a
priori information about the anomaly, can be
analyzed “post-mortem” to accurately determine
which candidate node was the likely source of the
anomaly. Such extensions of CS theory suggest
efficient and scalable techniques for monitoring
large-scale distributed networks, many of which
can be performed without the computational burden
of reconstructing the complete networked data. (@
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Spam doesn’t really need an introduction—anyone who owns an email address likely
receives spam emails every day. However, spam is much more than just an annoyance.
Spam’s hidden economic cost for companies in wasted storage, bandwidth, technical
support, and most important, the loss of employee productivity, is astronomical. The
annual cost of spam for a company with 12,000 employees is approximately $2.4 million,
according to a study conducted by Windows & .NET Magazine in 2003 [1]. Since then, the
amount of spam received has only increased. According to estimates from Messagelabs,
over 80 percent of emails received from 2005 to 2008 were spam [2].
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The magnitude of the spam problem has not
gone unnoticed by the US government. In 2003, the
United States government drafted the Controlling
the Assault of Non-Solicited Pornography and
Marketing (CAN-SPAM) Act to address the issue.
CAN-SPAM provided guidelines on unsolicited
email practices and specified how unsolicited email
could be sent legally. Unfortunately, compliance
has been extremely low; therefore, the act has had
virtually no effect on lowering the volume of spam.

On the other hand, CAN-SPAM allowed
Internet service providers (ISPs) and web site
owners to file lawsuits against spammers, resulting
in fines and occasional jail sentences for convicted
spammers. While lawsuits are certainly a way to
fight back against spammers, given the vast number
of spammers, suing an individual has a negligible
effect on reducing the overall volume of spam,
especially when lawsuits are brought regardless of
the impact of the offense. Unfortunately, spammers
have responded by taking greater measures to
conceal their identities to avoid being detected.
Clearly, other mechanisms are necessary to combat
spam effectively.

One type of spam that represents a significant
threat to individuals and companies alike is phishing
spam. Phishing is an attempt to fraudulently acquire
sensitive information by appearing to represent
a trustworthy entity. Phishing spam often takes
the form of emails appearing to be from a trusted
financial institution with which the recipient does
business. These emails are written to persuade the
recipient to reveal confidential information such as
online banking passwords, credit card numbers, or
a social security number. Many victims of identity
theft have been fooled into revealing sensitive
information by phishing emails.

Current methods to combat spam before it
reaches a user include content-based filtering at the
recipient’s email server as well as blacklisting email
servers known to send only spam emails. Both
measures reduce the annoyance of spam and the
loss of employee productivity by decreasing spam
emails arriving at employee inboxes. However,
these strategies can also backfire. For example,
content-based filtering has the unintended side
effect of misclassifying legitimate email as spam.

Furthermore, filtering does nothing to reduce
the volume of spam that is sent. When spammers
know that a smaller percentage of emails are getting
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past the spam filters to the intended recipients, they
might compensate by sending more spam emails.
Thus, content-based filtering may even increase the
volume of spam sent!

Email servers that send only spam can be
blacklisted to filter out all emails sent from them.
Blacklisting differs from content-based filtering in
that the filtering is done on email servers instead
of on individual emails. Blacklisting is a more
efficient filtering approach, but the disadvantage to
blacklisting is that many email servers send both
legitimate email as well as spam; blacklisting such
a server would result in legitimate emails being
misclassified as spam.

Current anti-spam methods share one common
weakness—they are local; that is, they detect and
filter out spam at a single location, which is the
recipient’s email server. Local anti-spam solutions
are easy to maintain because a single administrator,
usually the information technology group of the
company or ISP, manages the process. But what
could an analyst discern by examining how spam
operates on a greater network level?

In this article, we investigate the spam
problem using a global approach, which requires
detection and monitoring of an entire network or
at multiple locations within a network. By taking
a global approach, an analyst can correlate data
over multiple email servers, times, and locations
to infer the behavior of spammers on a large scale,
which can then be used to combat spam nearer to
its source.

The best defense spammers have against anti-
spam techniques is to send spam emails without
being detected. So how do they do this? Consider
the path of spam, illustrated in Figure 1. First, a
spammer acquires email addresses on a web page
using a harvester, which is a piece of software
designed to visit web sites and extract email
addresses from the HTML source code. Next, spam
servers send emails to the acquired addresses. These
can be servers that belong to the spammers, or they
can be zombie computers, computers compromised
by viruses or other malware that end up sending
spam without their owners’ knowledge. Finally,
these spam emails make their way to the recipients’
inbox or junk mail folder.

The address acquisition process, known
as harvesting, is an often overlooked part of the
spam problem. Malicious spammers typically take
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measures to conceal their identities when sending
spam. One common method is to use massive
networks of compromised computers, known as
botnets. However, studies have indicated that
spammers do not take comparable precautions
when harvesting [3], perhaps because harvesting
is seen as a safer and more acceptable activity
than sending spam. Hence, monitoring harvesting
activity and tracking harvesters can be useful for
identifying spammers. This is one of the goals of
Project Honey Pot, created by anti-spam company
Unspam Technologies, Inc. [4].

Project Honey Pot

Project Honey Pot was started in 2004 to
monitor harvesting and spamming activity via a
network of decoy web pages set with trap email
addresses, known as honey pots. These honey pots
are embedded in the HTML source code of a web
page and are invisible to human visitors. Harvesters
looking for email addresses in HTML source code
sometimes stumble across the trap addresses and
acquire them. Harvesters can also be directed to trap
addresses by links to honey pots from legitimate
web sites that they also scan for email addresses.

Each time a honey pot s visited, the centralized
Project Honey Pot server generates a unique trap
email address. The visitor’s IP address is associated
with the trap email address and then recorded on the
server. The email address embedded in the honey
pot is unique, so only the visitor to that honey pot
could have collected it. Because these trap email
addresses are not published anywhere besides the
honey pot, all emails received at these addresses are
assumed to be spam.

Project Honey Pot provides a unique
opportunity to investigate the social structure of
spammers. It is normally very difficult to uncover
anything at the spammer level because we cannot
associate a spam email with a particular spammer.
The “from” address can be easily spoofed, and the

spam served from a compromised computer has
little association with the spammer. With Project
Honey Pot each spam email is associated with the
harvester that acquired the recipient’s email address.
When spammers fail to conceal their identities
while harvesting, the IP address of the harvester is
likely to be closely related to the actual location of
the spammers.

Because each email received at a trap email
address is associated with the harvester that
acquired it, the identity of the spammer is revealed.
As of March 2010, Project Honey Pot comprised
over 48 million honey pots distributed all over the
world [4]. The data collected by Project Honey Pot
provides a global perspective on spam and makes it
possible to investigate correlations over many spam
servers and time periods.

Discovering communities of spammers

As mentioned earlier, understanding the
behavior of spammers on an expanded scale is one
of the benefits of a global approach for fighting
spam. But what do the social networks of spammers
look like? In particular, how well organized are
spammers? Do they operate alone, or in groups?
Are there meaningful communities or organizations
of spammers? Sending spam emails is profitable for
spammers; otherwise, there wouldn’t be so much
spam. Can a business model be derived from the
community structure of spammers? These questions
can be answered using the data collected by Project
Honey Pot and a technique known as spectral
clustering [5].

The social network of spammers can be
represented as a graph consisting of nodes and
edges, as shown in Figure 2. The nodes correspond
to spammers, and an edge between two nodes
corresponds to a social relationship between the
corresponding spammers. A social relationship can
be inferred by the use of common resources or by
similar behavior patterns over time. Communities

FEATURE

Figure 1: The path of spam
from an email address on a
web page to your inbox
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in a social network emerge by partitioning the
graph into groups of nodes. Sets of nodes in the
same group are highly similar and sets of nodes in
different groups are not similar. Spectral clustering
aims to minimize the normalized cut between
groups, which is defined by

Sum of all edge weights between groups

Normalized cut =
Sum of all edge weights within groups

For example, spectral clustering divides the
graph shown in Figure 2 into the two communities
indicated by the blue and green nodes, respectively.
The groupsrevealed by spectral clustering correspond
to communities in the social network. For these
communities to be meaningful, the graph must be
constructed so the edges between nodes correspond
to actual relationships between spammers.

Figure 2: An example of a graph and its separation into
two communities by spectral clustering

The main challenge in constructing the
graph is choosing the edges and edge weights,
because we cannot observe relationships among
spammers. This problem does not arise in most
other community detection studies. For example,
in friendship or collaboration networks, users
willingly participate in the study, and information
on relationships among members of the network is
readily available. However, for spammer network
discovery, relationships between spammers
are only inferred through correlations between
behavior patterns. Two spammers who have high
behavioral correlation are likely to be collaborating.
This likelihood, which is treated as the strength of
the relationship between these two spammers, can
be used as the weight of the edge between the two
corresponding nodes in the graph. For this research,
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we investigate two types of behavioral correlation
between spammers: correlation in spam server
usage and temporal correlation.

Correlation in spam server usage

Correlation in spam server usage between two
spammers corresponds to common usage of a set
of spam servers. Spammers typically try to conceal
their identity by using spam servers that aren’t
traceable back to them, such as botnets. Thus spam
servers can be viewed as resources for spammers,
and common usage of a set of spam servers
between two spammers translates into resource
sharing, which suggests that the two spammers
are collaborating. By constructing the graph using
correlation in spam server usage between all active
spammers over a period of time, many interesting
communities of spammers are revealed, as shown
in Figure 3.

Each node in the graph corresponds to
a spammer, and the color and shape of a node
indicates the community to which he or she belongs.
Note that the majority of spammers belong in a
large, loosely-connected community identified
by the red nodes. These are the spammers who do
not exhibit extremely high correlation with other
spammers. Hence it is not a true community, but a
collection of spammers who appear to be operating
alone. The interesting communities are the smaller,
tightly-connected ones surrounding the large red
community. We believe that these nodes correspond
to actual social communities of spammers working
together and sharing substantial email server
resources.

Reinforcing our belief is the observation that
the discovered communities tend to divide into
phishing and non-phishing communities, as shown
in Figure 4. The shade of each node corresponds
to the phishing level of each spammer, which is
defined by

Number of phishing emails sent

Phishing level =
Total number of emails sent

We denote spammers with high phishing
levels as phishers and the rest as non-phishers.
Notice that phishers tend to form communities with
other phishers, and that non-phishers tend to form
communities with other non-phishers. This is also
evident from looking at the most frequent subject
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Figure 3: Community structure of
spammers inferred by correlation in
spam server usage in October 2006
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Figure 4: Alternate view of the same
social network shown in Figure 3,
shaded by phishing level

The Next Wave = Vol 18 No 3 = 2010 31



Table 1: Most common
subject lines from a
phishing and a non-phishing
community (truncated

to 50 characters by

the Project Honey Pot
database)

Password Change Required

Make Money by Sharing Your Life with Friends and F

Question from eBay Member

Premiere Professional & Executive Registries Invit

Credit Union OnlineA® $50 Reward Survey

Texas Land/Golf is the Buzz

PayPal Account

Keys to Stock Market Success

PayPal Account - Suspicious Activity

An Entire Case of Fine Wine plus Exclusive Gift to

lines of emails from all spammers in a community.
For example, the most frequent subject lines from
both a phishing community, namely the orange
community of triangular nodes at the top of Figure
3, and a non-phishing community, namely the blue
community of circular nodes on the right of Figure
3, are listed in Table 1. Notice the distinct separation
between phishing subject lines and non-phishing
subject lines. The subject headings were not
provided to the clustering algorithm and therefore
confirm that server usage patterns alone can provide
evidence of coordinated phishing behavior. We note
that phishers tend to concentrate in small, tightly-
connected communities. This observation provides
empirical evidence that communities of phishing
spammers are sharing resources, namely spam
servers, among the community. This suggests that
phishers tend to exist in isolated, well-organized
social communities or teams.

Figure 5:

Community structure
of spammers inferred
by temporal correlation
in October 2006
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Temporal correlation

Temporal correlation refers to correlation of
the times when emails were sent. High correlation
is expected among spammers who are working
together. Because we do not know the times when
emails were sent, we correlate the times when
emails were received. The community structure
as revealed using temporal correlation is shown in
Figure 5.

Again, the shape and color of a node represent
the community that a particular spammer belongs
to. Two large communities appear, and as before,
they can be interpreted as loosely-connected
communities of individuals who do not exhibit
much correlation with each other. However, in the
smaller communities, some interesting patterns
emerge. In particular, we discover groups of
spammers with nearly coherent temporal spamming
behavior. Consider the group of ten spammers



whose temporal spamming behavior is shown in
Figure 6, in which the horizontal axis corresponds
to days in a month and the vertical axis corresponds
to the number of emails sent each day. The figure
consists of ten lines overlaid onto the same plot,
with each line corresponding to the temporal
spamming behavior of one spammer in the group.

How striking that the ten spammers in Figure
6 are sending almost identical numbers of emails
over time! And how probable that they are working
together and belong to an actual social community.
These ten spammers, found in the community of
dark-blue colored nodes in the top left of Figure 5,
are especially interesting because they are among
the heaviest spammers in the Project Honey Pot
data set, where a heavy spammer denotes someone
who sends a large number of spam emails. In
addition to their highly coherent temporal behavior,
these spammers also have IP addresses in the same
block, indicating that they are operating from
the same physical location, perhaps in the same
building. Furthermore, these ten spammers’ IP
addresses are in the IP address range of a known
rogue ISP, McColo Corp., which had been hosting
and providing services for cybercriminals until it
was taken down in November 2008 [6]. All of the
abovementioned observations point to this group of
spammers being very well-organized, and thus we
conclude that they form a tight social community.

Conclusions

Current methods of fighting spam are local
and take place at the receiving end, which does
not help to reduce the amount of network traffic
consumed by spam emails. By studying spam
from a global perspective using the data collected
by Project Honey Pot, we were able to correlate
the behavior of spammers, allowing us to identify
different communities of spammers. We found that
the majority of spammers appeared to be working
alone, but a significant number of them appear to
form communities or organizations. In particular,
we discovered many small communities of
spammers who predominantly sent phishing emails,
likely attempting to acquire sensitive information
to engage in identity theft. We also discovered
several communities of spammers operating from
the same physical location, suggesting strong social
connections between these spammers.
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Figure 6: Temporal spamming behavior of group of ten
spammers over the month of October 20086, by IP

By analyzing spam and spammer behavior
from a global perspective, we were able to identify
meaningful communities of spammers. The next
step would be to use these findings to combat spam.
Several avenues that could be pursued include
identifying social cliques that could perhaps be
linked to an organization and identifying important
members of the social network who could be
sued, which would have a much greater effect
than randomly targeting spammers. There is also
potential for online detection of communities; that
is, updating the detected communities as emails
are received. This would allow for a new method
of spam filtering, not by content or blacklisting,
but by behavioral patterns of spammers, which are
less variable. Thus filtering by behavioral patterns
has the potential to be more effective than existing
filtering methods.

Although the problem of spam does not
appear to be going away anytime soon, methods
and tools for combating it are improving. Spectral
clustering and network discovery can lead to
insights into how spammers operate by revealing
their social networks. The methods described in
this paper might also be applied to discovery of
illicit behavior patterns in other applications, such
as financial transaction networks or chat room
interaction networks. For additional details on
our methods, the reader is referred to “Revealing
Social Networks of Spammers Through Spectral
Clustering” [7]. @
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the Internet .rom traditional telephony
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world interactions, participants of online
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Challenges to geolocation

Geolocation on the Internet would
be substantially less difficult if Internet
protocol (IP) addresses corresponded to
physical locations, much as area codes in
phone numbers do. However, the Internet
was designed to be fundamentally
decentralized, without the rigid region-
based routing hierarchy that existed in
the original phone networks. Instead,
Internet service providers (ISPs) cover
overlapping geographic regions that, in
some cases, can span entire continents.
Hence an IP address, even when narrowed
down to its issuing ISP, only provides very
coarse-grain geographic information.

Since IP addresses are mostly
opaque identifiers that provide little
information on the location of a node,
geolocation on the Internet requires
going back to first principles. The basics
of locating physical objects on the globe
have been worked out in great detail
over the last few centuries, and comprise
triangulation (where bearings to known
landmarks are used to determine location),
multilateration (where time difference of
arrival from a common emitter are used),
and trilateration (where distances to
known landmarks are used to determine
location). Applying these approaches to
wired wide-area computer networks poses
significant challenges. First, bearings are
not applicable, as wired networks do not
support traditional notions of angles,
grids, or even a Cartesian space. Second,
measurements are inherently imprecise,
as latencies on a network depend not only
on the circuitous paths that packets follow
over fiber networks (instead of a straight
line from a lighthouse or satellite) but
also on the queuing delays encountered
in routers along the way. Finally, unlike
the extensive lighthouse network or the
GPS satellites that provide an almost
ubiquitous coverage for navigation,
the Internet lacks well-placed, well-
known landmarks whose positions are
known precisely. As a result, the Internet
geolocation problem is akin to navigating
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on a map where most lighthouses are not
marked, in a world where light does not
necessarily travel in a straight line or at
a constant speed. Consequently, a naive
application of navigational geolocation
techniques to Internet geolocation does
not yield accurate or precise locations.

Octant framework

Our group has been developing
a  general-purpose,  comprehensive
framework for geolocation called Octant.
The key insight behind Octant is to view
the geolocation process as solving a
system of geographic constraints.

Octant aggressively extracts these
constraints from network measurements,
attaches a weight corresponding to the
confidence associated with that constraint,
and determines a feasible region in
which the node of interest is expected to
reside. This approach gains its accuracy
through three novel techniques. Firstly,
Octant can take advantage of negative
information—information on  where
a node is not—in addition to positive
information—information on where the
node might be. Secondly, Octant utilizes
available structural information about the
network to extract additional geographic
constraints from routers on the network
path, thus compensating for the indirect
and circuitous nature of routing paths on
the Internet. Finally, Octant can reason in
the presence of uncertainty by deriving
constraints from landmarks whose
positions are not known precisely, but are
instead computed by Octant itself. The
result is a system that can extract and
combine all available position-related
information to geolocate lighthouses and
nodes alike.

Geographic constraints

Constraints in Octant are geographic
rules that describe where a node can or
cannot be, relative to a landmark on the
globe. The constraints are derived from
network measurements between nodes
and landmarks. These constraints can
not only be of the positive form “node

A is within x miles of Landmark L ,” but
also encompass negative information
of the form “node A is further than y
miles from Landmark L .” Both kinds of
constraints carry valuable information,
and a comprehensive framework must be
able to take advantage of both kinds of
information.

Establishing suitable landmarks on
the Internet is essential for generating
precise constraints. Landmarks with
known locations, such as nodes at
universities and data-centers with well-
established position, can serve as a basis
for precise constraints, but are relatively
few in number and distributed unevenly
throughout the globe. To compensate
for this, Octant co-opts nodes within the
network fabric and uses them as additional
landmarks. Since the positions of these
nodes are not known, Octant first uses the
well-established landmarks to geolocate
these additional nodes, which are used in
turn to geolocate the final node of interest.
Extracting and using constraints based on
these additional landmarks is non-trivial
because the position of the landmark is
typically uncertain, rather than a precise
point.

In the simple case, where the location
of a landmark is known with pinpoint
accuracy, the two types of constraints
combine to form an annulus centered on
the landmark that describes the possible
location of the node of interest. This case
is illustrated in Figurela.

Octant enables meaningful
extraction of constraint regions even
when the position of the landmark is
uncertain and consists of an irregular
region. For a landmark k whose position
estimate is f3,, a constraint that places
the node within distance d from the
landmark defines a region that consists
of the union of all circles of radius d at
all points inside 3, as shown in Figure
1b. In contrast, a constraint that places
the node further than distance d from
the landmark can only safely rule out the
intersection of all circles of radius d from
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Figure 1 (a - d):

all points inside of 3, regardless of where
the landmark might actually be within f3,.
This condition is illustrated in Figure lc.
A scalable Octant implementation may
decide to approximate certain complex f3,
with a simple bounding circle in order to
keep the number of curves per region in
check and thus gain scalability at the cost
of modest error. Figureld illustrates the
constraint approximation.

Given a set of constraints, a precise
region can be efficiently computed
geometrically by taking the intersection
of positive constraints and subtracting the
negative constraints. There are, however,
many issues to solve before this approach
can be used for practical geolocation
on the Internet. In this solution, all
constraints are weighted equally and
the computed region is discrete; a point
is either part of the solution space or it
is not. A discrete solution strategy leads
to a brittle system, as a single erroneous
constraint can collapse the estimated
location region down to the empty
set. One strategy is to use only highly
conservative constraints derived from the
speed of light, bounding the maximum
distance a packet can theoretically travel
in a given time. We show later how to
compute robust solutions that are resilient
to error and measurement noise.

Mapping latencies to distances

The network latency between a
node and a landmark physically bounds
their maximum geographical distance.
A round-trip latency measurement of d
milliseconds between a landmark and

a node can be translated into a distance
constraint using the propagation delay
of light in fiber, approximately 2/3 the
speed of light. This yields a conservative
constraint on node locations that can then
be solved using the Octant framework to
yield a sound estimated position for the
node; such an estimate will never yield
an infeasible () solution. In practice,
however, Internet paths deviate so much
from great-circle distances that such
constraints are so loose that they lead to
very low precision.

Yet the correlation between latency
measurements and real-world distances is
typically better and tighter than constraints
based on the speed of light. Octant
calibrates each landmark by measuring
its latencies to other landmarks when
it is initialized, as well as periodically,
to determine the correlation between
network measurements derived from that
landmark and real-world distances. The
goal of the calibration step is to compute
two tight bounds, R, (d) and r, (d), for
landmark L and latency measurement d.
For a node A whose ping time to landmark
Lisd » Octant can derive the constraint
r(d) = |loc(L) - loc(A)|| = R,d,),
bounding the node’s distance from the
landmark. In practice, this approach
yields good results when there are
sufficient landmarks that inter-landmark
measurements approximate landmark-to-
node measurements.

Indirect routes

The preceding discussion made
the simplifying assumption that route

FEATURE

L]

lengths between landmarks and the node
are proportional to great-circle distances.
However, this is often not the case in
practice, due to ISPs’ use of policy
routing based on business agreements.
A geolocation system with a built-in
assumption of proportionality would
not be able to achieve good accuracy.
Specifically, nodes might choose
unexpectedly long and circuitous routes
for certain IP addresses. This occurs
often enough in practice that accurate
geolocation requires a mechanism to
compensate for its effects.

Octant addresses indirect routes by
performing piecewise localization; that
is, localizing routers on the network path
from the landmarks to the node of interest
in series and using routers localized on
previous steps as additional landmarks.
This approach yields much better results
than using just end-to-end latencies
because single-hop paths tend to be less
circuitous than multi-hop paths. Since
Octant can perform localization based
solely on round-trip timings, localizing
routers does not require any additional
code to be deployed within the network.

Handling uncertainty

With the many avenues to extract
geographic constraints from the network,
a mechanism to handle and filter out
erroneous constraints is critical for
maintaining high localization accuracy.
Octant uses a weight assignment
mechanism to characterize the confidence
of different constraints. A constraint’s
relative  weight value amplifies or
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dampens its contribution in estimating the
location region of the node of interest.

For latency-based constraints,
landmarks farther from a node are less
trustworthy than those that are nearby. The
simple intuition behind this relationship is
that latency in far-away nodes increases
due to the higher probability of data
packets traversing indirect, meandering
routes or highly congested paths. In
Octant, every constraint has an associated
confidence level, which is tracked through
the constraint-satisfaction process. This
process yields not only the set of feasible
points where the node can potentially lie,
but also be the associated probability for
the node residing at each point.

In the absence of weights, regions
can be combined via intersection
operations, leading to a discrete solution
for a location estimate—the node is
either within a region, or it lies outside.
The introduction of weights changes the
implementation of location estimates.
When combining two regions, Octant
determines all possible resulting regions
via intersections, and overlapping regions
are assigned the sum of their component
weights. Non-overlapping regions are
retained with their original weights.
This condition is illustrated in Figure
2. The final estimated location region
is computed by taking the union of all
regions, sorted by weight, such that they

exceed a desired weight or region size
threshold.

Future directions

The existing Octant framework
is accurate and comprehensive, but it
was designed to perform on-demand
network measurements to geolocate a
single node at a time. Consequently,
Octant relies almost entirely on active
network measurements performed on
demand; it does not perform any pre-
computation, and it does not take into
account any long-term network effects
or perform long-term measurements to
aid geolocation. On-demand probing
in large-scale deployments poses some
additional challenges. Firstly, given
the security consciousness of modern
network ~management policies, on-
demand network probing is considered
highly undesirable when performed at
a large scale, in bursts, and to arbitrary
clients. Such probes can be misclassified,
and their delivery may be intentionally
delayed or dropped in response. Secondly,
the expensive constraint evaluation
computation is dependent on the
constraints extracted from the on-demand
network measurements. The constraint
evaluation must therefore be performed
at runtime. Finally, on-demand probing is
observable, warning the node of interest
of possible surveillance.

We are currently

investigating geolocation
techniques based on

I [ passive  measurements.
Our research, conducted
in  collaboration  with
researchers at  Duke
University and Akamai
Technologies, centers on
identifying key ingress

reilbe where

points in the network
end-users  are
connected to the Internet
core, accurately locating

Figure 2:
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these points on the
globe using periodic
measurements, and creat-

ing a global mapping of IP address ranges
to these key points to provide a location
estimate of every IP address. We can
perform more precise geolocation on
specific nodes with fewer on-demand
probes by leveraging this global mapping,
or use the global mapping to identify
neighbors that can be probed as proxies if
the node is sensitive to probing.

There are, of course, associated
privacy concerns with geolocation.
Such technologies point to potential
threats for unauthorized personnel to
identify the location of sensitive assets,
suggesting the need for further work on
understanding the theoretical limits of
geolocation techniques and developing
countermeasures where necessary. &
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%4 | Moving Beyond Clustering
- | in the Analysis of Data

Exploratory data analysis is the search for structure in complex
data. In many cases the origins and statistical properties of a
data set may be poorly understood. Data may also be incomplete or
noisy. How can we understand the information contained in such a
data set when we don’t even know what questions to ask?

One of the most common first steps in data analysis is to cluster the
data points—that is, to look for groups of data points that appear
to have some set of characteristics in common. Data clusters are
statistical features that can be discovered by a computer and then
investigated further. In a topological sense, however, data clusters
are the simplest type of structure—a connected mass of points.

The rapidly developing new field of topological data analysis has
given us algorithms that can be thought of as a higher-dimensional
analogue to data clustering. This paper will explain some of these
topological methods and give examples of how they have been used.
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Figure 1: This squirrel will kill your plants
and not feel bad about it

Motivating example:
Bushy-tailed tree rats

Let’s face it—squirrels are the
terrorists of the animal kingdom. Given
acres and acres of dirt to dig in, they will
invariably jump into the nearest flowerpot
and uproot your beloved geraniums. In
the fall, they sit in trees and throw half-
eaten acorns at you. '

Suppose a naturalist marks all
the squirrels in a wildlife preserve with
electronic tags that record their locations
every hour. (Experiments like this have
been done with zebras and whales [1],
[2]). Each data point would consist of
the geographic coordinates and ID of the
squirrel. If there were two populations
of squirrels living in opposite corners of
the preserve (Figure 2), that fact could
be discovered by any one of a number of
data clustering algorithms.

Now, suppose you want to detect
a lack of data points in a region. For
example, suppose that a fox lives in the
center of the nature preserve and preys on
the squirrels. Therefore, no squirrels can
be found in that region of the park (Figure
3). How could a data clustering algorithm
detect this avoidance behavior?

In fact, what you would hope to
observe is a sort of hole in the squirrel
location data. While data clustering
algorithms detect connected components
in a data set, a hole is the absence of a
connected component. Topologists have
formalized this notion of ‘“holes” in
arbitrary dimensions.

Studying the topological properties
of discrete data is difficult for several
reasons. The traditional algorithms for
analyzing topology tend to be slow, and
the computations tend to be sensitive
to noise. In recent years, however,
mathematicians and computer scientists
have developed several new algorithms
that are taking exploratory data analysis
into new dimensions.

Algebraic topology in pictures

At a basic level, topology is a

more lenient version of geometry.
Topology is often called “rubber sheet
geometry,” because spaces that can
be continuously transformed into one
another are topologically the same. For
example, to a topologist a square and a
circle are equivalent (a topologist would
say “homeomorphic”) because there is
a way to pair every point on a square
with a point on a circle in such a way
that points that are close together on the
circle are paired with points that are close
together on the square (and vice versa).
On the other hand, a figure-eight is not
topologically equivalent to a circle. One
way to see this difference is by removing
any one point from a circle, which leaves
one connected arc. But removing the
intersecting point from a figure-eight

leaves two disconnected arcs.

Unfortunately, deciding  when
two spaces are topologically equivalent
(homeomorphic) is not easy because
it is difficult to find a way to pair the
points of two spaces. Even more difficult

is to prove that two spaces are not

! This example is completely made up, and the author has absolutely no expertise in squirrel behavior or biology

40 Clumps, Hoops, and Bubbles

homeomorphic. Algebraic topology was
developed to compare the properties of
topological spaces without dealing with
the spaces directly. Algebraic topologists
have defined topological invariants that
label every topological space with some
more concrete mathematical object, such
as a number or a group. The key property
of an invariant is that spaces that are
topologically equivalent must be assigned
the same label. If two spaces have
different labels, you know for sure they
are topologically different. For example,
a topological invariant would have to give
the same label to a circle and a square.

<

Figure 2: Data points are represented by
squirrel shapes. The data points form two
distinct clusters. These clusters represent
an interesting bit of statistical structure
that can be further explored. Refuge map is
adapted from [3].
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Figure 3: In this example, the squirrels
seem to avoid the region in the center. This
is also an interesting bit of structure in the
data. But how do you discover or interpret
the absence of data points in a region?



Figure 4: To a topologist a coffee cup and a
donut are equivalent objects. They are both
solid three-dimensional objects with one
hole.

The simplest topological invariants
are the Betti numbers. Betti numbers do
have a precise mathematical definition,
but it is possible to explain the idea
in pictures. For now, focus instead in
terms of pictures. Suppose you have a
topological space, call it X. Intuitively, the
kth Betti number, ﬂk, counts the number
of k-dimensional “holes,” and the zeroth
Betti number, ﬁo counts the number of
connected components in X.

For example, a square and a
circle both have 8, = 1 since they both

thi=1
Proe=l?

A 2D blob with three holes

have a single one-dimensional hole.
A figure-eight, on the other hand,
has B, = 2 because it has two distinct
one-dimensional holes. Moving up a
dimension, a sphere has B, = 0, but
ﬁ2 = 1. It has no one-dimensional holes,
but does have a void inside it. Figure 5
shows several common household objects
along with their Betti numbers. The
zeroth Betti number, ﬂo, corresponds to
the number of connected components in
the space, X. In this sense, computing the
zeroth Betti number is analogous to doing
data clustering.

Triangulating spaces

Most interesting topological spaces
are continuous objects. A collection of
data, on the other hand, is just a bunch
of discrete points. Alone, the data points
have no interesting topology. To study
a data set topologically, one has to
assume that the data points are sampled
from some underlying space and build
a continuous structure on the points.
Usually, this amounts to building what
topologists call a simplicial complex.
Figure 6 illustrates the difference between
a continuous space, discrete data points,
and a triangulation.
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Figure 5: Some simple topological spaces and their Betti numbers. Intuitively, the kth Betti
number counts the number of k-dimensional holes in the space.
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Fact: A computer can
compute the Betti numbers

of a simplicial complex.

A simplicial complex is a collection
of objects called simplices. A 0-simplex
is a point, written [a ]. A 1-simplex can
be thought of as a line connecting two
0-simplices, written[a,a, ], anda2-simplex
is a triangle with O-simplices at each
vertex and 1-simplices as edges, written
la, a, a,]. Any k + 1 points Ay 5.5, CAN
define a k-simplex [q, a, ... a,] whose faces
are (k - 1) - simplices. Figure 7 illustrates
some low-dimensional simplices and an
example of a simplicial complex.

See references [4] and [5] for more
in-depth  mathematical
Readers familiar with algebraic topology

are reminded that the kth Betti number is

background.

equal to the rank of the free part of the
kth homology group. As such, for some
spaces the kth Betti number’s value
will depend on the ring over which the
computation is performed. In this paper
all computations are over a field, so no
torsion parts ever appear.

Persistent homology

Look at the collection of data points
in Figure 8(a). You probably see that the
points lie roughly in a circle. Or you could
say that there is a hole in the middle of the
data. How would you write a computer
program that could detect the presence
of the hole? You would probably start
triangulating the data by drawing lines
between pairs of points that are close
together and filling in triangles when
three points are close together. You could
pick some threshold T and use the rule:

* ifx,- , <T then add the 1-simplex

[x, x]

o iflx- |l -x) [x,-x, <T thenadd
the 2-simplex [xi X xk]
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Continuous Space

Figure 6: A set of discrete points has no interesting topology. Studying the
triangulation leads to finding the interesting topology.

Figures 8(b-e) show triangulations
constructed using such a procedure
for several different threshold values.
Since the threshold is increasing, each
triangulation in the sequence is a subset of
the next. One would hope that computing
the Betti numbers of these triangulations
would give the Betti numbers of a circle,
namely 8, = 1. As it turns out, every
triangulation pictured gives the wrong
answer. Due to the noise in the data, as
the threshold 7 increases, data points
get connected, forming loops. The loops
generated by the noise are quickly filled in
with triangles as T continues to increase,
but new loops form, preventing us from
obtaining a space with 8, = 1.

It would be ideal to distinguish
between those loops that form and are
quickly filled in and those loops that
persist for a long time as 7 increases.
This is exactly what persistent homology
allows us to do. It tracks individual

Discrete Data Points

Triangulation

(9, &, 5]

[a,]
L ]

Simplices Simplicial
Complex
I“-:l il |
la, 8 a,a,

y &‘x A I
TN,

topological features (like loops) through
anested sequence of spaces and discovers
when they appear and when they are
filled in. Topological features that form
and quickly disappear are considered the
product of noise, but the features that
persist from early in the sequence to the
end are more fundamental and interesting.

Suppose a loop first forms in the
space constructed with threshold value
T = b, and first gets filled in at threshold
value T'=d. Then the persistence interval
for that loop is (b,d). The same is true for
higher dimensional features.

Visualizing persistence

There are several ways to visually
represent  persistence
One popular visual representation is
called the persistence barcode. In a
persistence barcode, each topological
feature that arises in the sequence of

information.

spaces is represented by a horizontal line.

Figure 7: Low-dimensional simplices and
a Simplicial Complex

Topological features that persist through
most of the sequence are represented by
long lines, and features that appear and are
quickly filled in (noise) are represented
by short lines. The horizontal axis in a
persistence barcode is labeled with the
threshold values that were used to build
the triangulations.

Figure 9 shows the Betti, persistence
barcode for the data in Figure 8. There are
several short blue lines corresponding
to loops that formed and were quickly
filled in as the threshold used to construct
the triangulations increased. The long
blue line corresponds to the overall
circular structure of the data (or rather
the hole in the middle of the data). The
values on the horizontal axis correspond
to threshold values. This example is
just the barcode for one-dimensional
topological features (loops). For any
space there are also persistence barcodes
for topological features in dimension O

e cli.ﬂl:- ]

Figure 8(a-e): A nested sequence of triangulations of a set of data points. Because the data points form what looks like a circle, it

seems reasonable to compute the Betti number 3, = 1. In fact, computing the first Betti number for every triangulation in the sequence
gives the wrong answer. This outcome shows how noise can be a problem in topological computations.
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Figure 9: The persistence barcode for the data pictured in Figure 8. The short blue lines
correspond to loops that appeared and were quickly filled in as the threshold increased
(noise), and the long line corresponds to the circular structure of the data.

(clumps), dimension 2 (bubbles), and
higher dimensions. The barcode for any
dimension higher than the dimension of
the space will always be empty.

All
presented here will be expressed in terms

of the persistence results
of barcodes, so a simpler example is worth
a closer look. Figure 10 shows a popular
example of a sequence of nested spaces.

Computing homology

If a space can be shown as a
simplicial complex, then a computer can
compute its Betti numbers. The traditional

uses linear algebra (a lot of matrices). To
compute the kth Betti number, ﬁk, of a
simplicial complex with N k-dimensional
simplices, the computer needs to deal
with an N x N matrix. The complexity of
the algorithm is polynomial in N, which
presents a problem when working with
data sets with millions, or even thousands,
of data points.

It turns out that the matrices used
to compute Betti numbers have a lot of
structure, and both they and the simplicial
complex itself can be simplified to
give more efficient computations. The
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(CHomP) [6] has developed a variety of
algorithms and software for efficiently
computing Betti numbers, homology, and
functions on homology. Note that CHomP
works with cubical simplices instead
of simplicial complexes. The theory is
equivalent, but sometimes a computer can
more naturally represent a space in terms
of squares and cubes than as triangles and
tetrahedra.

One type of simplification
developed by CHomP researchers that has
an effective visual interpretation is the use
of “reduction.” It turns out that often a lot
of the simplices in a simplicial complex
can be collapsed without affecting the
homology or Betti numbers of the space.
Since the homology computation can be
polynomial in the number of simplices,
pre-processing to reduce the number of
simplices has a big payoff.

Computing persistent homology

The computations done by CHomP
all deal with a single space or function.

algorithm for doing this computation Computational Homology Project As already mentioned, Betti number
m
1 1 1 1 1
1] 1 F- ] 4 -]
.
@
| 1 1 1 |
1] 1 F ] 4 -
a9 b a a a a a
@
d C d c d c d c d C

Figure 10: A simple example of a nested sequence of spaces and the corresponding persistence barcodes for dimensions 0 and 1.
At T =0 there are two disconnected points, so there are two lines in the Berri, persistence barcode. At T = 1 those two points become
connected, so only one of the lines in the barcode persists. A new disconnected point appears, though, so a new line in the Betti, barcode
begins at 7= 1. At T =2 the first loop forms, so a line appears in the Berti; barcode. All of the points are connected at this point. From
T =2 on there is only one line in the Betti, barcode. At T =3 the loop is divided into two distinct loops, so a new line appears in the Berti,
barcode. At T'=4 one of the extra loops is filled in, so the second line in the Betri] barcode ends. At 7=5 all loops are filled in, so all lines

in the Betti, barcode have ended.
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computations can be very sensitive to
noise, and persistent homology can be
used to distinguish between important
topological features and features arising
from noise. An algorithm to compute
persistent homology over the finite field
Z, was first published by Edelsbrunner,
Letscher, and Zomorodian in 2000 [7].
A more general approach and algorithm
along with a more powerful mathematical
context for the algorithm was published
by Zomorodian and Carlsson in 2004 [8].

The persistence algorithm takes a
nested sequence of simplicial complexes
and generates a collection of persistence
intervals. The persistence intervals can be
displayed as barcodes or by using other
visualization techniques.

Restricting the computation to
homology over fields makes certain
shortcuts possible in the linear algebra.
Also, instead of performing separate
computations for each space in the nested
sequence of spaces, the algorithm actually
does a single homology computation that
encodes all the information about where

in the sequence different simplices appear.

The running time of the persistence
algorithm tends to grow linearly with
the number of simplices. The worst-
case complexity is still polynomial, but
performance tends to be much better
than that in practice. The most serious
computational problem is due to the
number of simplices that appear as the
sequence of triangulations is constructed.
Therefore, the most practical use of the
persistence algorithm is to employ a
traditional data clustering algorithm to
identify connected components, and then
compute the persistent homology of each
cluster individually.

Other approaches
taken to limit the number of simplices
necessary to compute persistence. For
example, a type of simplicial complex

have Dbeen

called a witness complex reduces the
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number of data points one starts with and
builds a more efficient triangulation [9].
Investigations are underway to make the
CHomP-style reduction compatible with
the persistence algorithm.

Software tools

The CHomP tools are available
from Dartmouth [6]. The persistent
homology tool, Plex, is a collection of
MATLAB modules and scripts released by
researchers at Stanford [10]. It supports
the computation and visualization of
nested sequences of simplicial complexes
and persistent homology. The Stanford
researchers have recently released a new
Java-based implementation called JPlex.
All of the persistence barcodes and 3D
simplicial complexes in this paper were
generated using Plex and the associated
MATLAB scripts.

Homology and statistics

A persistence barcode or set of
persistence intervals generated from a
data set is a statistic. In all of the examples
in this paper, this statistic is evaluated in a
fairly qualitative way by looking for long
lines in the persistence barcode. However,
a more objective way to distinguish
between interesting topological features
and noise is necessary. Questions like,
“How long does a persistence interval
need to be before being considered
interesting?” and “How sensitive is a
persistence barcode to noise?” must be
answered.

These problems are just beginning
to be addressed. For example, in [11]
Bubenik and Kim compute the expected
persistence  barcodes  for  certain
probability distributions on circular and
spherical spaces. In [12] Cohen-Steiner,
Edelsbrunner, and Harer present results
on the stability of persistence diagrams
of functions (something not addressed
here). In the process they define a

function for measuring the “distance”

Also,
the properties of a persistence barcode

between persistence diagrams.

are very dependent on the method used
to triangulate the data and generate the
nested sequence of simplicial complexes.
In [13] de Silva and Ghrist prove a
relationship between the Rips and Cech
complex of a data set. In [14] Chazal and
Oudot study the relationship between
Rips, Cech, and witness complexes and
their effects on persistence computations.

Applications and examples

Persistent homology has proven

useful  for  extracting topological
information from discrete noisy data. The
key properties that make it so useful are its
ability to tie together topological features
appearing on different scales and the
existence of fast algorithms to compute
it. Persistent homology techniques have
been applied to a number of problems
including natural image analysis [15],
molecular protein shapes [16], surface
description [17], and sensor network
coverage [13].

Much of the research in this area has
been supported by the Defense Advanced
Research Projects Agency (DARPA)
Topological Data Analysis (TDA) and
Sensor Topology for Minimal Planning
(SToMP) programs. Robert Ghrist’s
recent article [18] contains a survey of

some results from the TDA program.

An example of my own application
of persistent homology appears later in
this article and in more detail in [19]. The
general procedure used in my example is:

e Start with a data set

¢ Define a metric (distance function)
on the data points

¢ Build a nested sequence of
simplicial complexes based on the
metric

* Use a persistence algorithm to
compute persistence barcodes

¢ Interpret the results



Encounter traces
The performance
networks with mobile nodes is influenced
by the mobility of the nodes. Unfortunately,
node mobility is fantastically complicated.
Researchers have focused instead on the

of wireless

node encounter patterns that the mobility
produces. To this end, there have been
several experiments that tag people or
animals with wireless motes (small short-
range Bluetooth radios) that record which
other motes they come in contact with
and when. These experiments produce
encounter traces, a series of data points,
each consisting of the encounter time and
the IDs of the two nodes involved.

Encounter trace experiments include
the famous Haggle project experiments
[20] and a student experiment at UT-
Austin [21]. Wireless LAN traces such
the MIT trace [22], the UCSD trace
[23], and the Dartmouth trace [24] are
also commonly repurposed for use as
encounter traces [25].

The data points in an encounter
trace consist of the IDs of the two
wireless nodes involved and the time of
the encounter. For example, a section of
the trace could look like:

time Node ID 1 Node ID 2
9:42:30 20 12
9:47:01 72 31
9:47:21 58 20
10:02:55 64 45

These data points provide very little
information. In particular, there is not any
explicit information about the locations
of the nodes. Persistent homology
techniques are used to deduce information
about the topology of the space the nodes
live in from the encounter trace. The same
techniques can be used to detect certain
changes in the space.

Surprisingly, physical information
can be deduced from data points that

Figure 11: The topology of the space
affects the type of encounter patterns that
are possible. If the space is like a line, node
A cannot encounter node C without one of
them encountering node B. If the space is
like a loop, nodes A and C can encounter
each other without encountering node B.

do not even contain relative position
information. ~The concept makes
some intuitive sense, however, when
considering Figure 11, which illustrates
how the topology of a space has an effect
on the types of encounter patterns that are
possible.

Defining a metric on an
encounter trace

Building a weighted graph on
the set of encounters will give rise to a
metric. This metric will be different from
the Euclidean metric associated with the
physical space of the experiment.

Assume that an encounter trace
contains N data points of the form:

e =(t, nodeAl, nodeBl)

e, = (t,, nodeA , nodeB,)

e, =(t,, nodeA , nodeB ®)

Here e, represents the ith encounter,
consisting of ¢, the time the encounter
took place, and nodeA, and nodeB,
the two nodes involved in the encounter.
Some
assumed v, .

maximum node velocity is

Construct a weighted graph G,
in which the vertices correspond to
the encounters {e}_ .. The idea is
summarized in Figure 12. Suppose two
encounters, e, and €, have a node in
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common. These encounters occurred at
two particular points in space, )?i and )?‘
The locations X; or )?] are not known, but
if the two encounters are close in time,
then they must be close in space. It can
be deduced:

t-t]<T = |x-x|<T-v
J i J max

X

Therefore, if two encounters e,
and e have a node in common, they
can be connected with an edge with
weight |, - z|. This allows us to define
a metric on the set of encounters

d;(e.g) if g ande, areconnectedin G
© otherwise

d(e,e,)={

where dG(e,.,ej) is the minimum distance
between the vertices e, and €, in the
weighted graph G.

The reverse of the implication above
is not valid. Two encounters may happen
at the same physical spot but be far apart
in time. Because of this, it is better to think
of the space being studied as the physical
space crossed with time. This idea was
evident in Figure 12. For example,
if the nodes are moving on a circle
X = §' C R? with coordinates (x,y),
then the space whose topology should
be reconstructed is a cylinder with
coordinates (x,y,/). X x NR*, which is
homologically equivalent to X, so the
Betti numbers of the product space being
reconstructed will be the same as the Betti
numbers of X.

Building a witness complex

A set of data points {e} _, , with
a metric on them is now in place. There
are a variety of ways to build a nested
sequence of simplicial complexes from
these data, but building the witness
complex in the manner of de Silva and
Carlsson [9] seems to give the most
efficient triangulation and the best results.

The concept of the witness complex
is based on the Delaunay triangulation
[26]. The first step is to select a subset
of landmark data points to use in the
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analysis. The remaining data points are
used to decide which of the landmarks to
connect. The construction incorporates
a variable threshold, 7T, that can be used
to build a nested sequence of simplicial
complexes.

Experiments and results

The first step focuses on encounter
traces generated from simulations. This
access allows for the addition of certain
characteristics to the experiment, which
will allow for observation of how the
changes manifest themselves in the

results.

One-dimensional experiments

Remember the squirrel example
at the beginning of this paper. Since
squirrels can move pretty much freely
around a two-dimensional area, their
encounter traces will be a little complex.
To start with something simpler, consider
an imaginary example involving the
squirrel’s harmless cousin the naked mole
rat (Figure 13). Naked mole rats spend
their lives in networks of underground
tunnels. Understanding the naked mole
rats’ burrowing habits would require
either excavating their burrow, and
destroying it in the process, or gathering
an encounter trace from the mole rats
themselves. The topological connectivity
of the burrow could be discovered as a
result of the encounter trace, and changes
could be detected as the mole rats extend

some parts and abandon others. Such
research is of particular interest given
the prominent role naked mole rats have
played in movies [27] and television
programs [28].

the
of naked mole rats is simpler because

Studying encounter traces
the tunnels they live in are effectively
one-dimensional spaces. Two mole rats
cannot avoid each other when passing in

a tunnel.

Our  first
simulations of nodes (mole rats) doing
random walks in one-dimensional spaces.

experiments  are

Encounters are recorded the moment two
nodes pass each other. A simple event-
driven simulator was built to generate
these data.

Compare three types of ID
experiments:

* Aline segment

* Asingle loop

* A multi-loop

The line segment experiment
used 50 nodes following random walks.
Topologically, this space has one

connected component and no higher-
dimensional topological features, so
B,=1and B, =0 fork >0 . Since the fully
contractible topology always results from
setting the witness complex threshold
high enough, it is difficult to quantify how
well the method is working for this type

of space.

Figure 12: An example of four encounters involving four nodes and the resulting
weighted graph. Each encounter becomes a vertex in the graph, and encounters with
nodes in common are weighted with the time difference.
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Figure 13: Naked mole rats live in networks
of underground tunnels. These tunnels are
effectively one-dimensional spaces. This is
what the squirrel in Figure 1 would look like
without fur.

In the
50 nodes followed random walks in a
circular space. This space also has one
) = 1, but
it has a single non-trivial 1-cycle, so
B, =
complex and computing the persistent
homology, the correct Betti numbers are

single-loop experiments,

connected component, so 3

1. By building a filtered witness

recovered 100 percent of the time.

In the multi-loop experiments,
adding 50 nodes per extra loop tends to
generate enough encounters to reconstruct
the spatial topology. The node mobility
is the same as before. The correct Betti
numbers are ﬁo = 1, since there is one
connected component, and ﬁl = [, where
[ is the number of loops. The same
technique as before correctly recovered
this information for all two- and three-
loop examples attempted. Figure 14
shows a witness complex and persistence
barcode for a two-loop experiment.

Interpreting the results

Since these data were generated
from controlled simulations, it was
known in advance how to interpret the
results. The one-dimensional topological
features discovered correspond to loops

in the space the nodes live in.

In general, interpreting persistence
results is not so straightforward. Just as



Betti,

ot i i i i 4 i i 4
| Bz T4 L] 14 k 12 & |.E
imrl;
o’
m
| ==
16k =
1] 0z a4 ng oa [ Iz 1.4 11

Figure 14: The witness complex and persistence barcode for an experiment in the
two-loop space. The x and y coordinates in the witness complex plot correspond to the
physical location of the encounters and are used to visualize the results, but are not
used in the computation. The z-axis corresponds to the encounter time.

with data this
technique can find structure in a data set,

clustering, analysis
but it cannot explain what that structure
means. It can be used in exploratory
analysis to better focus any further
investigation.

The examples in the following

sections provide some cases Wwhere
interpretation of the results is not so

straightforward.

Detecting changes in a space

Persistent homology can detect
certain types of changes in a space, for

example, a single loop that starts out
small, enlarges to a certain extent, and then
shrinks down again. Assuming the time
for a node to circumnavigate the shrunken
loop is comparable to the times between
encounters on the expanded loop, the
shrunken loop will appear contractible.
The persistent homology of the encounter
complex should approximate that of a
sphere; thatis, 8 =1, =0,and 8,= 1.
This experiment was performed
using the same simulator as before. At
time ¢ the graph was scaled down by
a factor of 10, relative to the regular size,
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while the node velocities were the same as
usual. Then the graph was scaled up at a
constant rate, reaching normal size (edge
length 1) at time ¢ . Finally the graph
was scaled back down to the initial size
at the opposite rate that it was expanded,
ending at ¢,

The persistent homology algorithm
does recover the correct Betti numbers.
Figure 15 shows the witness complex
recovered from this experiment. Since
the attempt was to recover the second
Betti number, it was necessary to fill in
3-simplices in the witness complex. The
number of simplices in a complex tends
to increase rapidly with dimension,
which was the case here. There were
56 O-cells, 1,074 1-cells, 11,703 2-cells,
and 86,568 3-cells.

Detecting changes in a 2D space

Let us return to the squirrel example
from the introduction. Squirrels are
not restricted to linear and loop-shaped
spaces. It is important to determine if
recovery of topological information from
nodes living in a more general space is
possible.

An experiment took place in
which 50 simulated squirrels performed
discrete random walks on a bounded two-
dimensional grid. After 5,000 simulation
steps, the squirrels’ mobility model is
changed so that the squirrels are repelled
by the center of the grid. This repulsive
force causes them to congregate near
the boundary of the space. Then, after
another 5,000 steps, the repulsive force
is removed and the squirrels randomly fill
up the grid again.

The encounter complex during the
random walk phase of the experiment
would be expected to have no real
topological features. On the other hand,
the encounters during the middle phase
of the experiment, when the squirrels are
repelled by the center of the grid, should
have the homology of a loop (see Figure
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Figure 15: The witness complex obtained from the
The Betti
numbers of a sphere were recovered, demonstrating

expanding/contracting loop experiment.

that persistent homology can detect certain types of

changes in the physical space.

16). Amazingly, these features for both
phases were recovered. Combining all
three phases into one computation should
yield a non-zero second Betti number
much like the expanding/contracting
loop the
number of simplices involved made the

experiment. Unfortunately
combined computation intractable with
the MATLAB modules.

Experiments with real
encounter data

The Haggle Project encounter data
includes data from three experiments.
The same methods were used in the
previous sections were applied to analyze
the data from the Cambridge Computer
Lab experiment.

According to the documentation,
the experiment was conducted over seven
days in January 2005 at the University
of Cambridge Computer Lab. Nineteen
iMotes were carried by graduate students
from the System Research Group. Only
12 of the mobile motes yielded usable
data, and an additional 210 external
Bluetooth devices appeared in the traces.
For the analysis, encounters with external
devices were filtered out and the data
sorted by encounter time; trusting that
the iMote clocks were sufficiently well
synchronized that this sorting made sense.
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Persistent Betti numbers
computed for dimensions 0 and 1 for each
day’s data individually. The persistence
diagrams for the first day are shown
in Figure 17. A single fairly persistent
1-cycle on the scale of 50-65 minutes was
observed in the results for each day. The

cycle was particularly prominent on day

were

one, but similar features appear in days
two and three.

Bettl0
N

Figure 16: The witness complex obtained for the repulsion phase of the
2D random walk experiment. The number of simplices made it intractable
to compute the homology of the entire data set at once.

In this case, the observed features
are probably not due to the space the
experiment was conducted in, though
that cannot be ruled out, either. Based
on the simulation experiments, many
more mobile nodes would be required
to reliably identify a spatial cycle. The
most likely explanation for these results
is some sort of scheduling. For example,
a group of mote carriers may encounter

1 1 1

1 1 1 1

0
0 500 1000 1500

Betti 4

2000 2500 3000 3500

1 1 1

1 1 1 1

0
0 500 1000 1500

2000 2500 3000 3500

Figure 17: The persistence barcodes from the first day of the Haggle Cambridge Computer
Lab experiment. A fairly persistent 1-cycle on the scale of 50-85 minutes was observed.
These results cannot conclusively be explained, but they do demonstrate how persistent
homology can reveal topological structure in real encounter trace data.



another group at a meeting or class, and
then another encounter may take place
at lunch. Unfortunately, not enough is
known about the particular experiment
to draw a definitive conclusion. It would
be worth performing a similar experiment
that records more details and is perhaps
more tightly controlled to see how
different behaviors affect the persistent
homology results.

These results show that topological
analysis methods such as persistent
homology can find structure in real
encounter data that may not have been

accessible via traditional statistical
methods.
Conclusions

Algebraic  topology gives us

powerful tools for uncovering features
that may not be accessible through
traditional statistical methods, and
powerful and elegant ways of describing
these phenomena. These tools will
be useful for discovering structure in
complex data. (9
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Host and Network
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Overview

One of the biggest challenges facing computer
network administrators today is keeping track of
the hosts on their networks. Without this knowl-
edge, it is impossible to keep all hosts patched,
up-to-date, and protected from infection and ex-
ploitation by malware.

your

Trusted computing technologies can help ad-
ministrators take control of their networks so
that they can begin to address security problems.
Products that leverage these technologies are be-
coming more and more widely available. Network
owners should position themselves to take full ad-
vantage of these new products by making sure that
they purchase hosts that support the full range of
trusted computing technologies.

Trusted Computing Group

The Trusted Computing Group (TCG) is an indus-
try and government consortium formed to devel-
op and promote standards for trusted computing
technologies. They have produced specifications
and guidance for—among other things—the
hardware TPM, the measured boot and launch of
PG operating systems, and the TNC network secu-
rity architecture.

Trusted Platform Module

Trusted Computing Technologies are included in
most PC desktop systems sold today. The most
common is the Trusted Platform Module (TPM).
The TPM is a motherboard-based cryptoprocessor
with capabilities that include secure generation
and storage of cryptographic keys, and generation
of random numbers.

An important capability of the TPM with respect to
host integrity is the accumulation and secure stor-
age of system measurements. Measurements are
hashes of host software computed by the host and

accumulated within the TPM. If the same compo-
nents are measured at a later time and the mea-
surements have changed, then the components
have changed. This mechanism can be used to
detect whether system software has been infected
with malware.

Measured Boot and
Measured Launch

Measurement is a powerful capability for
generating information about the integrity of
software and data. Many hosts that support a
TPM include a Trusted Computing Group (TCG)-
compliant BIOS that automatically measures the
host’s pre-boot environment. When compared
with prior measurements, this measurement
indicates whether the BIOS, boot loader, and
other low-level system components have been
modified since the last system boot.

Many modern microprocessors support a
measured launch capability that can be leveraged
to ensure the integrity of a post-boot software
environment—such as an operating system
kernel or virtual machine hypervisor. The
measured launch may be used in conjunction with
pre-boot measurements to provide reasonable
assurance that critical system components have
not been modified since the last launch. This
potentially powerful capability is provided by
microprocessors that support Intel Trusted
Execution Technology (TXI) and AMD-V
virtualization.

Network Access Control
Simply measuring pre- and post-boot environ-
ments is not enough to ensure network integrity.
In order to actually improve the security of a net-
work, the measurements computed for individual
hosts must be collected and acted upon. At the
very least, measurements should be reported
to system administrators, who can then decide
whether action is needed. Ultimately, systems
can attest their integrity to a centralized network
access-control point using an architecture such
as Trusted Network Connect (INC). The control
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point can decide whether the host should be al-
lowed on the network.

Recommendations

Trusted Computing Technologies can provide net-
work administrators with basic information about
host integrity without expensive hardware or ex-
cessive administrative overhead.

The potential benefits of trusted computing are
well worth the minimal investment. While today
it is hard to buy a PC that does not come with a
TPM, hosts that support measured launch are less
common. When purchasing new hosts, system
owners should look for desktops and servers
that include a TPM and support for measured
launch and protected execution—such as Intel’s
Trusted Execution Technology (TXT) or AMD-V
virtualization technology.

Hosts that support TPMs should have their
TPMs turned on and activated from the BIOS. This
enables measurementofthe pre-bootenvironment,
and is necessary for measured launch. For more
information on trusted computing and taking
advantage of the TPM, see “How to Use the TPM:
A Guide to Hardware-Based Endpoint Security,”
on the TCG website.

www.trustedcomputing.org

For more information,
Email: hostintegrity@tycho.nsa.gov

Enable
your Trusted

Platform Module






